
 

Copyright, all rights reserved  

1 

 
 

CUSTOMIZATION 
TOOL  

 
USER’S GUIDE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

September 2018, Release 1.1 
 
This document contains information which is the property of Dialogue Technologies. All rights are 
reserved. Dialogue Technologies does not guarantee or in any way represent that the information is 
accurate and/or complete and assumes no responsibility for any errors, omissions or other issues with 
the information. The information in the document is provided AS IS. Dialogue Technologies does not 
assume any responsibility for any consequences of using the information contained herein.  



 

Copyright, all rights reserved  

2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Third Edition (September 2018)  
This major revision obsoletes and replaces all previous versions. This edition applies 
to Release 2.0 of Ergo, and to all subsequent releases and modifications until 
otherwise indicated in new editions. Address any comments you may have on the 
document to: 
 
Dialogue Technologies AB 
Ankdammsgatan 20 
S-171 43 Solna, Sweden, or 
info@dialoguetech.com 
 
When you send information to Dialogue Technologies, you grant Dialogue 
Technologies a nonexclusive right to use or distribute the information in any way it 
believes appropriate without incurring any obligation to you.  
@ Copyright Dialogue Technologies AB 2018. All rights reserved. 

  

mailto:info@dialoguetech.com


 

Copyright, all rights reserved  

3 

CONTENTS 

1. Overview of Ergo ................................................................................................. 5 
1.1 The Query Interface ..................................................................................... 6 
1.2 The Natural Language Engine ..................................................................... 6 

1.3 The Customization Tool ............................................................................... 7 
1.4 The need for Dialogue Technologies’ Ergo .................................................. 8 
1.5 Database-centric and corpus-centric applications ........................................ 9 

1.5.1 Database-centric applications ............................................................... 9 
1.5.2 Corpus-centric applications ................................................................... 9 

1.5.3 Comparison between database-centric and corpus-centric applications
 10 

2. Using the Customization Tool ............................................................................ 12 
2.1 Enter DB information .................................................................................. 13 

2.1.1 Enter table information ........................................................................ 13 

2.1.2 Joins .................................................................................................... 15 

2.1.3 Inclusion dependencies ....................................................................... 17 
2.1.4 Excluding columns .............................................................................. 17 

2.2 Create entities ............................................................................................ 18 
2.2.1 Creating a new entity .......................................................................... 19 
2.2.2 Naming an entity ................................................................................. 20 

2.2.3 Classifying an entity ............................................................................ 21 
2.2.4 Subclass and instance entities ............................................................ 21 
2.2.5 Consists of .......................................................................................... 23 

2.2.6 Units of measure ................................................................................. 24 
2.2.7 Creating terms ..................................................................................... 25 

2.2.8 Specifying syntax ................................................................................ 26 
2.2.9 Specifying an SQL statement .............................................................. 27 
2.2.10 Creating verbs ..................................................................................... 28 

2.2.11 Subclasses .......................................................................................... 29 

2.2.12 Creating adjectives .............................................................................. 29 
2.2.13 Intersect .............................................................................................. 30 
2.2.14 Instances ............................................................................................. 31 

2.3 Creating relationships between entities ...................................................... 32 

2.3.1 Defining relationships .......................................................................... 32 
2.3.2 Creating or changing a relationship ..................................................... 33 
2.3.3 Removing a relationship ...................................................................... 34 
2.3.4 Correcting invalid relationships. .......................................................... 34 

 



 

Copyright, all rights reserved  

4 

Preface 

The objectives of this document are: 

1. To document our knowledge of and experiences with Dialogue Technologies Ergo 
application customization to enable customers to have access to all the information 
they need to customize their application. 

2. To provide a reference document to facilitate both customization and support 
efforts by demonstrating how to solve specific kinds of generic customization 
problems and by identifying relevant product limitations for minimizing customization 
time. 
 
 



 

Copyright, all rights reserved  

5 

PART 1. Advanced Customization Guide 

1. OVERVIEW OF ERGO 
Dialogue Technologies Ergo is a query product, which uses advanced grammar-
based Natural Language Processing (NLP) technologies. It provides end-users and 
business professionals using their own natural language, such as English, with the 
ability to access information stored in relational database management systems 
(RDBMSs) or to control applications.  
 
The components of Ergo are: 
i) Query Interface (QI) for interactions between the users and the database: 

• QI for voice users 

• QI for text input 
ii) Natural Language Engine (NLE) with an API for processing the queries 

• Natural language analyzer  

• Natural language generator 
iii) Customization Tool (CT) for customizing applications: 

• Conceptual modeling facility 

• Model transfer facilities 
 

 

Figure 1 Components of an application 

 



 

Copyright, all rights reserved  

6 

1.1 The Query Interface 

The query interface handles communication between the user and the database. It 
can be text-oriented for applications with text input via e.g. the web, a special input 
window, SMS, e-mail, etc., or based on using a voice front-end for converting speech 
to text. 
 

1.2 The Natural Language Engine 

The Natural Language Engine (NLE) is the Ergo component that transforms queries 
into structured query language (SQL) statements (or extensive markup language, 
XML, etc.) that is sent to the database management system, which retrieves the 
answer. The input to this component is a natural language query. The output is the 
SQL command into which the input query has been translated as well as a set of 
paraphrases of the input query. 
 
The NLE is designed with an Application Programming Interface (API) so it can be 
used as an embedded component in other products. In principle, the API can be 
used by any program. It is up to the calling program to handle user interactions, to 
use the generated SQL commands for retrieving data, and to answer users' 
questions based on the data and the information returned from the API. 
 
When an end user submits a natural language query, it is parsed. Valid sentences 
are translated to an internal format using an analysis grammar for the language of 
the query. The vocabulary that is used for parsing consists of the application-
independent words contained in the built-in dictionary and the application-specific 
words that have been added during the customization process. The query is 
translated back into natural language as a paraphrase to permit the user to confirm 
that the query has been understood correctly by the computer. In cases of ambiguity, 
alternative paraphrases are presented to the user for selection of the correct one. 
After confirmation, the translated query is sent to the database and the answer is 
displayed for the user. The query can be of the yes/no sort. For example, the user 
types in the following query: 
 
Which senior manager works at the head office? 
 
which results in the interpretation: 
 
Find senior managers that work at departments named head office. 
 
Ergo can handle natural language questions, which cannot be expressed in a single 
SQL query. The natural language query is translated into an answer set, which is 
beyond pure SQL. Besides SQL statements, the answer set contains information on 
the data representation (yes/no, report) derived from the input natural language 
question and, in cases when the data cannot be retrieved by a single SQL query. It 
also includes SQL statements for creating intermediate relations. Intermediate 
relations are temporary relations created as SQL tables containing data to be 
retrieved by a query. When the user selects an interpretation, the corresponding SQL 
is sent off to the Database Management System (DBMS). 



 

Copyright, all rights reserved  

7 

 

Figure 2 The Natural Language Engine 

 

1.3 The Customization Tool 

The Customization Tool (CT) is used to create a conceptual model by defining 
relations between concepts and the database tables and columns, specifying 
relevant natural language terms, and establishing relations between the words and 
the database elements. When selecting tables and columns for an application, and 
when processing the basic entities generated automatically by the CT, the 
customizer is prompted to enter information in a series of dialog boxes. The 
customizer selects the suggestions he wants or enters the information requested. 
Once this basic customization is complete, the customizer defines more complex 
relations in the conceptual model he or she builds. 
 
An application in Ergo is a conceptual model. This conceptual model is a collection of 
prolog facts about the tables and columns in the database, including all information 
about corresponding entities, terms, and relations the NLE requires to process 
queries. When users ask queries, Ergo makes use of these facts to process the 
query and generate an answer. The task of providing Ergo with application-
dependent information (i.e., an application conceptual model, which includes an 
application dictionary) is called customization. Applications are customized by a 
customizer (i.e., the one who customizes Ergo for a specific application). 
 
A conceptual model in Ergo is used as a formal representation between the database 
and the language. It is connected to: 
 
• A database through SQL-statements, and 



 

Copyright, all rights reserved  

8 

• A language through natural language terms. 
 
Using the Ergo CT the customizer creates a conceptual model. This model describes 
all the objects, which are of interest to the users. In other words, it is a model of the 
universe of discourse, which is selected portion of the real world or a postulated 
world dealt with in the application. The conceptual model is represented graphically 
to the customizer. The modeling technique used by Ergo is the binary ER 
(entity/relationship) model. This was chosen because the expressive power of the 
E/R approach and that it is simple and can easily address language concepts and the 
links between them. 
 
The conceptual model is composed of concepts (entities) and relationships (links) 
between them. It is connected to the natural language terms from one side and to the 
database from the other side. These can either be nouns, verbs, and adjectives. 
Relationships are those that connect entities together which may denote possession, 
time, place, verb and prepositional relationships. 
 

 

Figure 3 Binary Entity Relationship Model 

 
In the customization process, words needed for a given application are specified in 
the model together with associated grammatical information. The relation of the 
words to each other and their relationship to information in the database is also 
defined. Many users can access the same customized application.  
 

1.4 The need for Dialogue Technologies’ Ergo 

The need to use Ergo may vary. Ultimately there will be a host of applications and 
devices, which are controlled via voice or text commands. Initially two major 
application areas have been defined. These include: 
 
i. Command applications: These are applications where a device, application, or 
service in controlled by issuing commands in natural language. This way advanced 
operations can be performed without the user having to learn a set of complicated 
commands. A special case is mobile services. Voice control using natural language 
is one of the strongest user interfaces for mobile applications. 
 
ii. Customer support: Since Ergo supports asking questions in natural language the 
same Ergo application can service end-users both via a voice interface and a web-



 

Copyright, all rights reserved  

9 

based query interface. The result is significant savings in customer support costs and 
an increased level of service. These applications include support and help-desk 
applications as well as information applications. 
 
There are certainly more areas where language-based user interfaces will become a 
reality over time.  
 
The examples in the rest of this document generally reflect a data-mining application 
in which various decision makers in a company would like to access business-critical 
data from the company database. A customer support application can in this context 
be understood as entering frequently asked questions and manuals into an SQL 
database and allow end-users to query that database for information.  
 

1.5 Database-centric and corpus-centric applications 

There are two main types of Ergo applications, database-centric and corpus-centric. 
In this context a corpus is a set of type questions and answers that describe the 
domain, or universe of discourse (UOD), that the application should cover. A type 
question is a formulation of a question requesting a specific piece of information. E.g. 
How long is the ship? represents a question about the length of a particular ship. The 
same question can be formulated in a number of different ways (e.g. What is the 
length of the ship?, How long is the vessel?, etc.). Each of these requests the same 
information and each formulation can serve as representation for the type question. 
 

1.5.1 Database-centric applications 

Ergo can be used for building database-centric applications, taking its starting point 
in the answers, i.e. the existing databases. A typical example is the Yellow Pages. 
The Yellow Pages contain information about names, addresses, telephone numbers, 
etc. usually stored in a huge database. The purpose is to make this, and only this, 
information available to users. 
 
In this case the knowledge domain of the application is completely defined. In other 
words, the answers that the application can provide are known a priori. As a 
consequence, all different questions that can be asked to retrieve these answers are 
limited in number, and can, in principle, be listed. Database-centric Ergo applications 
can thus reach a coverage of the user questions approaching 100%. The pre-study 
of a database-centric application is more focused on the design of the databases and 
how this design can be represented in the domain model, than on how questions can 
be formulated. This is not surprising since the database content restricts how 
questions can be posed. 
 

1.5.2 Corpus-centric applications 

In corpus-centric applications Ergo takes its’ starting point in the users' questions, i.e. 
what the users actually want to know. The knowledge domain or UOD is more 
difficult to define in this type of applications since it is hard to anticipate what users 
would like to know and how they are going to ask about it. For corpus-driven 
applications pre-study mainly consists of: 
i) Pin-pointing the knowledge domain (what) and  



 

Copyright, all rights reserved  

10 

ii) Gathering as many authentic end-user formulations as possible about this domain 
(how).  

 
It is very important that the collected data is as authentic, and as large as possible, 
since it is almost impossible to cognitively foresee user questions. This data makes 
up the corpus. 
 
Based on the corpus a suitable database structure is defined, including defining 
tables and columns in the tables.  
 

1.5.3 Comparison between database-centric and corpus-centric applications 

The main difference between the two types of applications is in how the UOD is 
determined and how the database structure is defined.  
 
In the database-centric approach the database, including all data records, is given 
from the beginning, something which largely also defines the corpus.  
 
In the corpus-centric approach the corpus, and the database structure, is refined in a 
series development stages, each involving testing on a group of users. The database 
is populated with data during the development process. This is described in more 
detail in Appendix B. 
 

 Database centric Corpus centric 

User question Induced from database Empirical pre-study and 
study of question logs 

Model Governed by database 
design 

Governed by user 
questions 

Database Given Governed by model 

Knowledge domain Identical with content of 
database 

Combination of initial 
hypothesis, pre-study and 
analysis of user data. 

Table 1 Characteristics of the two types of applications 

 
A particular strength of Ergo is that both types of applications can be combined.  
 
For example, two knowledge domains belonging to database-centric and corpus-
centric applications, respectively, were combined into a single customer service 
application. The database-centric knowledge domain contained area codes for 
telephony (e.g. allowing questions like Where does 0611 go? and What's the area 
code for Härnösand?). The underlying database contained one table with three 
columns with: 

• Area code (e.g. 0611),  

• Area (e.g. Härnösand) and  

• Country (e.g. Sweden).  
 
The corpus-centric knowledge domain covered user questions about 
telecommunication products and services (e.g. allowing questions like Can I order 



 

Copyright, all rights reserved  

11 

ADSL 8.0 Mbit? and How often does the phone bill come?). The structure of this 
database was determined by user queries. 
 
In the combined application users could ask both about area codes and general 
questions about products and services, with the application querying two different 
databases.  
 

  



 

Copyright, all rights reserved  

12 

  

2. USING THE CUSTOMIZATION TOOL 
 

 
 

In rework tables you 
specify what database 
structure the model has. 
You should specify the 
JOIN-PATHS and 
INCLUSION 
DEPENDENCIES that 
you have found in the pre-
customization phase. You 
should specify the primary 
key and columns and 
exclude columns you do 
not need.  
 
You do all this using the 
Mode ➔ DB and Action 
➔ Add tables, Add 
columns. 

Customization links words 
that you are going to use 
in your queries to the 
database tables and 
column. You have to 
define these words as 
entities. This is done by 
assigning a term, 
classifying, defining the 
syntax and maybe adding 
SQL statements to the 
entity. Additional entities 
may need to be created if 
there is no data base 
representation for the 
entity 
 
Mode ➔ Lang and Action 
➔ Add entity 

As with any entity, 
additional entities must be 
related to other entities. 
Relationships are formed 
based on the entities 
classification. There are 
both Language and 
Conceptual relationships. 
 
You do this by 
dragging/dropping one 
entity on top of another in 
the graphical interface.  

Figure 4 Customization process 



 

Copyright, all rights reserved  

13 

2.1 Enter DB information 

In the CT you enter information about the database tables and columns – this 
becomes part of the domain model. The engine needs to know the name of the 
database to be used as well as information about tables and columns.  
 

2.1.1 Enter table information 
 

To enter table information press Mode ➔ DB and Action ➔ Add tables.  
 

 
 

Figure 5 Opening of the "Add tables" window 

 
When you press Add tables a screen appears that prompts you to enter the name of 
the database and tables.  
 

 

Figure 6 The "Add tables" window 

 
Press Add and Confirm to complete the list of database tables 
 
Once you have entered all tables you can add the columns of each table. To add the 
columns, you press Action ➔ Add columns. Enter the name of each column for each 
table – press Add for each new column.  
 
Add additional information for each column – define the type of data you have in 
each column by double-clicking on each column name, and select the data type in 
the Edit column screen: 
 



 

Copyright, all rights reserved  

14 

 

Figure 7 "Add colums"and "Edit columns" windows 
 
 

The result from the example above look like:  
 

 

Figure 8 Graph DB mode 

 
You can now create keys, join-paths, inclusion dependencies and exclude columns 
that you decided on in the previous phase. You should also exclude foreign keys and 
any other columns that you do not want to include in your model. Open the 
“Properties of columns” window by double-clicking on the column in the graph: 
 

 
 

Figure 9 Defining columns and keys 



 

Copyright, all rights reserved  

15 

2.1.2 Joins 

A join-path is established between the primary key of one table and its foreign key in 
another table. This enables the Natural Language Engine to select information from 
different tables in a single query. More importantly, if a concept from one table 
contains an attribute associated with another table, a join-path enable a relationship 
to be established, thus linking entities across tables. For instance, if you have the 
EMPNO column in two tables, e.g., EMPLOYEE and DEPT tables, then you could 
connect the two tables with a join-path. If an employee has a department phone 
number, e.g., DEPT PHONE, then this relationship can be defined. 
 
To define a join path, click on one of the tables and drag it on top of another table – 
this will open the window below: 
 

 
 

Figure 10 Defining joins and inclusions 

 
Tables must only be joined with one join-path. 
 
Except for multi-column primary key whose components are multi-column foreign 
keys, only one single-column join-path should be made between the two tables. 
 
So, if these two tables, EMPLOYEE and DEPT also have a column called DEPTNO, 
or 'department number', you can choose which join-path to make: either the join-path 
between the EMPNO columns or between the DEPTNO columns, but NOT BOTH. 
 
If you define more than one direct join-path between two tables, Ergo assumes at 
least one table has multiple-column primary keys. If there are more than one join-
path links between a pair of tables Ergo interprets this as a multi-column join-path. 
For example if a table has a two-column key that can be found as a foreign key in 
another table with, say, a three-column primary key, you may join both columns to 
the corresponding columns in the second table. 
 
Join-paths cannot be circular. If you have connected the employee table and the 
department table with a join-path and you have connected the department table with 



 

Copyright, all rights reserved  

16 

the address table then the employee table and the address table automatically has a 
connection between them, and you should not make a join-path between them. What 
order to connect the tables is somewhat arbitrary, but connections should be made to 
the most important table. So, if you are dealing with an employee application then 
you could connect the employee table to all the other tables like spokes in a bicycle 
wheel. 
 
Concerning designing what join-paths should be the best paths let us take this 
hypothetical example. 
 
 
Table: Insurance Policy 
COL1: POLNO(Primary key) 
COL2: REGION_CD 
COL3: DISTRICT_CD 
COL4: BRANCH_CD 
 
Table: REGION 
COL1: REGION_CD (Primary Key) 
 
Table: DISTRICT 
COL1: REGION-CD(Primary Key) 
COL2: DISTRICT CD(primary Key) 
 
Table: Branch Office: 
COIL: REGION_CD (Primary key) 
COL2: DISTRICT_CD(primary Key) 
COL3: BRANCH CD(primary Key) 
 
Given these insurance tables, we could link Region, District and Branch Office to 
Insurance Policy individually. We can go from Insurance Policy to Branch Office to 
District to region etc. There are various possibilities to join these tables. However, 
what decides the best join-path? Usually, the kind of questions and the complexity of 
the SQL generated dictate the choice of a join-path. If the application mostly 
concerns insurance policies and agents in branch offices, we might link 
Insurance_Policy via Branch Office. If the application concerns policies and regions, 
then we may link via regions. If all three are equally important, then we will link all 
these to Insurance_Policy. 
 



 

Copyright, all rights reserved  

17 

 

Figure 11 Example of join-path and inclusion dependencies 

 

2.1.3 Inclusion dependencies 

Primary-Key/Foreign-key relations should be scrutinized. 
 
If the foreign-key column represents a different concept than the primary-key concept 
(e.g. Tab 1. employee/Tab 2. manager), then an Ergo inclusion dependency is 
usually specified, and the conceptual relationships of the super-type entity will be 
inherited by the subtype entity. 
 
If a foreign key column represents the same concept as the primary key (e.g., 
Tabl_dept/Tab1dept) then customization is straightforward, and usually a join-path is 
set up between the tables to permit the specification of relationships between entities 
representing concepts related to different tables. 
 

2.1.4 Excluding columns 

In table mode, those columns that are excluded, are those, which are not part of the 
application, which are foreign keys columns representing the SAME concept as the 
primary key. An example of this is an EMPLOYEE_DEPARTMENT and 
DEPARTMENT_NO representing the same concept so EMPLOYEE_DEPARTMENT 
can be excluded. However the EMPLOYEE.EMPMNO and 
DEPARTMENT.MANAGER cannot be excluded because it is a subtype (subclass) of 
employee representing a different concept.  
 
To exclude a column, double-click on the column graph and select “Excluded” from 
the “Properties of column” window. 



 

Copyright, all rights reserved  

18 

 

Figure 12 Exclude column 

 
Constituents of a multi-column primary key should not be excluded. 
 
All the work in the pre-customization phase and in rework tables should be checked 
before you go on. It is important that this phase is correct before you move on to edit 
the model. See Case 1. Joins and Inclusion Dependencies, Fine Tuning the Model. 
 
 
 
 

2.2 Create entities 

Use the Lang ( language) Mode to create and define entities in the conceptual model. 
This is what you must do when creating/defining a new entity: 
 
1. Create an entity by giving it a name 
2. Classify the entity 
3. Give it a language term if you want to use it in a query 
4. Define the morphology of the term if you defined one. 
 
These are the tasks you can use when you edit the conceptual model. 



 

Copyright, all rights reserved  

19 

 
 

Figure 13 Process for entity creation 

 

2.2.1 Creating a new entity 

You create new entities when defining subclasses, instances, verbs and adjectives, 
to enhance the conceptual model. To create a new entity, select: 
 
Mode ➔ Lang 
Action ➔ Add entity 
 

 

Figure 14 Opening of the "Add entity" window 

 
Once you have opened the Add entity window you can enter Name of entity, classify 
it, add terms, syntax and SQL 
 



 

Copyright, all rights reserved  

20 

 
 

Figure 15 Add entity window 

 
Once an entity is defined and saved it will appear in the DB-mode graph. To edit the 
entity you double-click on the icon. 
 

 

Figure 16 Graph of an (undefined) entity 

2.2.2 Naming an entity 

The entity window contains an empty entry field, in which you enter a name for the 
entity.  
 
To change the name of an existing entity, select Name. The existing name appears 
in the entry field. Each entity name must be unique. It can contain up to 25 
characters. 
 

1. Type the entity name in the entry field. 
2. Press OK to enter the input and remove the window or press Class to add 

classification 



 

Copyright, all rights reserved  

21 

 

 

Figure 17 Specifying an entity name 

2.2.3 Classifying an entity 

Classify each entity in your conceptual model as a subclass or instance of at least 
one other class. The define classifications window shows existing classifications 
which are shown as a tree. The tree can be expanded and contracted. 
 

2.2.4 Subclass and instance entities 

1. Press the Class button to display the classification window: 
 

 
 

Figure 18 Entity classification window 

 
2. Select Subclass or Instance. 

 

3. Press Add ➔ Thing to display the hierarchy of classes: 



 

Copyright, all rights reserved  

22 

 
 
Figure 19 Class hierarchy 

 

Some classes in the hierarchy already have subclasses. This is marked by a  

symbol. To expand the hierarchy and view the subclasses, click on the  symbol. 
 
4. Select the class under which you want to add your entity.  
 
5. Press Confirm classification changes to add the entity. 
 

If the class you select is collapsed, a  appears in front of it to show that you can 
now expand that class. If you click on it, you see how your entity has been added to 
the hierarchy: 



 

Copyright, all rights reserved  

23 

 

Figure 20 Adding a subclass to the hierarchy 
 

2.2.5 Consists of 

Use the Consists of selection if you have to define a structured entity that consists of 
a combination of two or more entities that have an SQL statement. As an illustration 
you may have an entity car and an entity fast (connected to the terms fast, quick, 
etc.) and define a structured entity fast car. 
 
To classify a structured entity, 
1. Press Class. 
2. Add the entity as a subclass of one of the classes in the hierarchy. 
3. Press OK in the Define classification window. 
4. Select Consists of in the Define Entity window, and press Add. 
5. Select the constituent entities in the same order as products users will use them 
in their queries when they enter data values of the corresponding entities. Avoid 
more than 3 or 4 constituents for each composite entities Otherwise questions 
involving composite entities may cause memory problems. To remove a selected 
entity, click on it once in the list in the upper part of the window. The highlighting then 
disappears, and the entity is removed from the Ordered selection list. 
6. Press OK. 
 
 
 



 

Copyright, all rights reserved  

24 

2.2.6 Units of measure 

When you classify an entity as a subclass of quantified_property (or a subclass of a 
subclass of quantified_property), you can specify its unit of measure. The 
customization tool contains units of measure for age, area, currency duration, length, 
volume, and weight. When you specify a unit of measure, Ergo users can use that 
unit of measure in their questions, for example: 
 
How many dollars does a chisel cost? 
 
Selecting an existing unit of measure 
When you classify an entity as a subclass of quantified_property (or a subclass of a 
subclass of quantified_property), you can specify its unit of measure. The 
customization tool contains units of measure for age, area, currency duration, length, 
volume, and weight. When you specify a unit of measure, Ergo users can use that 
unit of measure in their questions, for example: 
How many dollars does a chisel cost? 
 
Selecting an existing unit of measure 
To select an existing unit of measure: 
 
1. Classify the entity under quantified_property (for example, as a subclass of price). 
2. Press Confirm classification changes. 
3. Press Unit of measure in the Class window. 
4. Select the unit of measure that you want from the list (for example, dollar). 
5. Press Confirm unit of measure changes. 
 
 



 

Copyright, all rights reserved  

25 

 

Figure 21 Specifying units of measure 
 

You can also specify a scale factor. For example, if your database contains weights 
measured in pounds, but users instead want to talk about ounces in their queries, 
select ounce as the unit of measure and specify 16 as the scale factor because 16 
ounces = 1 pound. 
 
Note that the scale factor is used only to convert the unit of measure in a question so 
that it corresponds to the unit of measure used for data values in the column. The 
answer to a question is not converted. 
 

2.2.7 Creating terms 

Create one or more terms for each entity that users want to refer to. The terms you 
create can be either nouns, verbs, adjectives, or proper names. Each term that refers 
to the same entity must have the same category; if you give an entity a term that is a 
noun, the additional terms you create for that entity are automatically nouns. Do not 
confuse terms with entity names. The name is used to distinguish the entity icon in 
the diagram. Terms are used in questions. To create terms: 



 

Copyright, all rights reserved  

26 

1. Press Term in the Add entity window. 
2. Enter your term: for example, employee. 
3. Select a category: Noun, Verb, Adjective, or Proper name. 
4. Press Add. 
 
If your term is a noun, verb or adjective, a window appears where you specify the 
grammar of the term. 
 

 

Figure 22 Creating a term 
 

2.2.8 Specifying syntax 

In the customization tool, syntax refers to how terms are used in a question. You 
must specify syntax for each verb entities. Syntax is optional for noun and adjective 
entities. 
 
Syntax for verbs, nouns and adjectives 
In the customization tool, syntax refers to how terms are used in a question. You 
must specify syntax for each verb entities. Syntax is optional for noun and adjective 
entities. 
 
Syntax for verbs, nouns and adjectives 
You can optionally specify syntax for adjectives and nouns. 
1. Press Syntax in the Add entity window. 
The Preposition complement window appears. 
2. Select the prepositions that you want to use with your entity. Verb syntax is 
discussed in detail in Fel! Hittar inte referenskälla. Fel! Hittar inte referenskälla.. 
3. Press Add 
 



 

Copyright, all rights reserved  

27 

 

Figure 23 Adding syntax 

 
4. If you select more than one preposition, the Syntax window appears with 
proposed phrases using your term. 
5. Select the phrase that suits your term. 
6. Press OK. 

2.2.9 Specifying an SQL statement 

We use SQL to define the SELECT statement for an instance, adjective, or noun 
entity that you create. If the column contains NULL values, you can change the 
SELECT statement so that the NULL values are disregarded in the answer to a 
query: 
 
SELECT X1.COMM 
FROM EPE.STAFF X1 
WHERE X1.COMM IS NOT NULL 
 
To specify an SQL SELECT statement: 
1. Press SQL in the Add entity window. 
2. Type the SELECT statement in the entry field, or copy text into the window from, 
for example, an application program. 
3. Press OK to enter the input and remove the window. 



 

Copyright, all rights reserved  

28 

 

Figure 24 Specifying SQL 

 
Note that if you modify the SQL statement for a column entity go to table mode, then 
return to entity mode, the customization tool generates a new entity with the original 
SQL statement. The column entity with a modified SQL statement remains 
unaffected in the conceptual model. 
 
See Fel! Hittar inte referenskälla. Fel! Hittar inte referenskälla. on SQL 
considerations for entities. 
 

2.2.10 Creating verbs 

Verbs are used to describe an action and link nouns together. In creating a verb, one 
should perform the following: 
1. Select Add entity from the Action bar 
2. Give the entity a name 
3. Classify the verb as event 
4. Define the term and choose the verb grammar 
5. Choose Verb Syntax 
• Choose verb complements 
• Choose prepositional complements 
• Select the final syntax 
 
To use the same verb with many different nouns, you can: 

• Link the verb to a noun with many subclasses. (Because relationships are 
inherited, the verb can also be used by any noun subclasses of that noun.) 

• Create two or more verb entities with the same terms. You must do this if: 
- The nouns are not all in the same table or tables that are joined together (directly or 
indirectly). 
- The verb has a different syntax or different meaning when used with different 
nouns. For example, if programmers write programs and writers write manuals about 
programs, define two verb entities with the term write. 
 



 

Copyright, all rights reserved  

29 

2.2.11 Subclasses 

Subclasses define data that are a subset of the data in the database. 

• A subclass is one that is wholly contained within another class already defined. 
Examples: 
Clerk is defined as a subclass of staff, where job is clerk. 
Tools are defined as a subclass of product, where the product group is tool. 

• Subclasses use SQL to select a defined subset from the database. 
 
Defining a subclass 
1. Create and name a new entity. You could give the name an extension 
of_subclass. 
2. Classify the entity under the entity to which it belongs. 
Examples: 
Classify clerk_subclass under staff_table.  
Classify tools_subclass under product_table. 
3. In the Terms window, make the entity a noun and give it suitable terms and 
grammar.  
4. Select any prepositional syntax required. 
5. Give the entity an SQL SELECT statement that will retrieve the required data. The 
column selected is normally the identifier (primary key) of the concept. 
Example: The SQL for clerk subclass is:  
SELECT X1.ID FROM EPE.STAFF X1 
WHERE X1.JOB = 'CLERK' 
 
If the column is in another table, you need not change the default SQL for the column 
entity. Appropriate SQL is derived from the inclusion dependency defined in Table 
mode. 
 

 

Figure 25 Subclass example 
 

2.2.12 Creating adjectives 

Adjectives in Ergo are used to select part of the data in a database. As with 
subclasses, this selection is done with an SQL statement. 
 
Specific adjectives 
1. Create and name an entity. No extension is needed. 
2. Make the entity a subclass of the noun it qualifies. 



 

Copyright, all rights reserved  

30 

3. In the Terms window, make the entity an adjective and choose suitable adjective 
terms and grammar. 
4. Select any prepositional complements that may be required. 
5. Enter the SQL that selects the required set of data. 
 

 

Figure 26 Adjective 
 

Subtype adjectives 
If you create a compound term and define it as adjective + noun, Ergo creates a 
subtype adjective. Example: 

 
If you define electrical product as adjective + noun, but without creating the adjective 
electrical, you can use the subtype adjective to ask questions such as List products 
that are electrical. 
If you define the compound term electrical product as a single noun, you can only ask 
questions such as List electrical products. 
 
For Each Subtype Adjective  
1. Create a subclass entity 
2. Classify the entity under the noun to be qualified 
3. Give the entity a compound term (Adjective + noun)  
4. Give the entity the SQL that selects the required subset. 
 

2.2.13 Intersect 

The classification window has an Intersect button that lets you select whether an 
entity intersects with other entities at the same classification level or is disjoint from 
them. Intersecting entities represent concepts that can be combined. 
Example: 
Senior is intersect with clerk_subclass because a person can be both a clerk and 
senior.  
 
Disjoint entities represent concepts that are mutually exclusive. 



 

Copyright, all rights reserved  

31 

Example: 
Clerk_subclass is disjoint with manager_subclass because a person cannot be both 
a manager and a clerk. 
 
Correct selection of intersect/disjoint improves performance. 
 
Defining intersect entities 
1. After classifying the entity, press Apply. 
2. Press Intersect. A list of appropriate entities appears.  
3. Select entities that are to be disjoint. 
4. You only need to do this for one of the two entities involved. 
 

 

Figure 27 The intersect window 

 

2.2.14 Instances 

Use instances to identify a specific row in a table. You may want to do this if an item 
in the database has more than one term. 
 
Examples: 
Head Office is also known as HQ by the users.  
A generator can also be called a dynamo. 
The state of Texas is referred to as TX in the database. 
 
You need to inflect the name of a database item.  
Example: 
You need to refer to cam and to cams, when CAM is the product name in the 
database.  
 
  



 

Copyright, all rights reserved  

32 

 
Creating instances 
1. Create and name an entity. You could give the name an_inst extension. 
2. Make it an instance of the concept to which it belongs. 
Example: 
Make cam_inst an instance of product_table.  
3. Select suitable terms and grammar. 
4. Select prepositional complements if required. 
5. Enter SQL to select the specific row, using the primary key.  
Example: 
To select cams, use 
SELECT X1.PRODNUM  
FROM EPE.PRODUCTS X1  
WHERE X1.PRODNUM = 150 

2.3 Creating relationships between entities 

You can create language and conceptual relations. You also can delete relations. 
This is the way it works: 
 

 
 

2.3.1 Defining relationships 

A relationship is formed between two entities. Only one type of relationship can exist 
between two entities, however, an entity can have as many relationships as 
conceptually and grammatically needed. There are two types of relationships: 
 
Conceptual relationships 



 

Copyright, all rights reserved  

33 

1. Identifies 
Used between an entity classified as an identifier and the entity it uniquely identifies. 
Example:  
What uniquely identifies staff? employee_id 
2. Names 
Used between an entity classified as name and the entity it names. The name should 
be the column by which the row is generally described. Example: 
What is the name of Staff? employee_name 
 
Language relationships 
There are additional relationships that denote possession, place, time and use of 
prepositions. 
1. Possessive relationships - denotes possession, for example, between the 
manager and employee entities you define: 
What does manager have? Employees 
 
2. Place relationships - denotes location, for example, between the manager and 
department entities you define: 
Where is the manager? Department 
 
3. Time relationships - denotes a duration of time, for example, between project and 
end date entities you define: 
Till when is the project? end date 
 
4. Prepositional relationships - denotes usage of a preposition between two entities 
(i.e. like a prepositional phrase). For example, between the verb entity works and the 
entity clerk, a preposition as is defined.  
Who works as a clerk 
 
Relationships are represented by lines in the entity diagram. A solid line is drawn 
between two entities if 

• You define a relationship between the entities 

• One entity is a subclass or instance of the other 

• One entity consists of several entities, including the other. 
 

2.3.2 Creating or changing a relationship 

To define a new relationship or change a relationship that you have already defined: 
 
1. Specify that you want to define a relationship, in either of these ways: 
- Hold down the right mouse button and drag one entity icon onto the other. 
- If a line (dotted or solid) already exists between the two entities, double click on the 
line. To define a relationship between cluster icons, first expand the clusters, then 
double click on the relationship line. 
 
The Define relationships window appears. 



 

Copyright, all rights reserved  

34 

 
Figure 28 Selecting a relationship 
 

2. The possible relationships are listed. Select the relationships that you want. 
The possible relationships depend upon the: 
- Class of each entity 
- Type of terms for each entity (noun, adjective, or verb)  
- Syntax of each entity. 
 
See Chapter 6 on Defining Relationships for more details 
 

3. Press OK. A solid line is drawn between the two entities in the diagram. 
 
Relationships need not be chosen from the Select relationships window when you 
have defined a subclass, instance or structured entities using the “consists of” 
function. If no relationships appear in the select relationships window, then you may 
have forgotten to classify or give a term to the entity. 
 

2.3.3 Removing a relationship 

To remove a relationship, double click on the line representing the relationship and 
deselect the relationships that are no longer valid in the Define relationships window. 
Alternatively – press Delete and the relationship will be erased.  
 

2.3.4 Correcting invalid relationships. 

Relationships that you previously defined may become invalid if you change the: 

• Class of either entity 

• Type of terms (noun, adjective, or verb) for either entity  

• Syntax of either entity. 
 
This is how you check and correct an invalid relationship: 
 
1. Double click on the relationship line to display the Define relationships window. A 
selected but invalid relationships appears within brackets: 
 



 

Copyright, all rights reserved  

35 

[What is the name of department? location] 
 
2. Click once on the invalid relationships to deselect it. The highlighting disappears.  
 
3. Select any of the possible relationships that you want. 
 
4. Press OK. 
 

 


