

Copyright, all rights reserved

1

ADVANCED
CUSTOMIZATION
GUIDE

September 2018, Release 1.1

This document contains information which is the property of Dialogue Technologies. All rights are
reserved. Dialogue Technologies does not guarantee or in any way represent that the information is
accurate and/or complete and assumes no responsibility for any errors, omissions or other issues with
the information. The information in the document is provided AS IS. Dialogue Technologies does not
assume any responsibility for any consequences of using the information contained herein.

Copyright, all rights reserved

2

Third Edition (September 2018)
This major revision obsoletes and replaces all previous versions. This edition applies
to Release 2.0 of Ergo, and to all subsequent releases and modifications until
otherwise indicated in new editions. Address any comments you may have on the
document to:

Dialogue Technologies AB
Ankdammsgatan 20
S-171 43 Solna, Sweden, or
info@dialoguetech.com

When you send information to Dialogue Technologies, you grant Dialogue
Technologies a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
@ Copyright Dialogue Technologies AB 2018. All rights reserved.

mailto:info@dialoguetech.com

Copyright, all rights reserved

3

CONTENTS

1. Overview of Ergo ... 9
1.1 The Query Interface ... 10
1.2 The Natural Language Engine ... 10

1.3 The Customization Tool ... 11
1.4 The need for Dialogue Technologies’ Ergo .. 12
1.5 Database-centric and corpus-centric applications 13

1.5.1 Database-centric applications ... 13
1.5.2 Corpus-centric applications ... 13

1.5.3 Comparison between database-centric and corpus-centric applications
 14

2. The Ergo application development cycle ... 16
2.1 Planning an Ergo project .. 16
2.2 Determining the target users .. 16

2.3 Gathering a representative corpus ... 17

2.4 Studying the RDBMS implementation .. 18
2.5 Identifying application areas ... 18

2.6 Studying the database design .. 19
2.7 Identifying application options .. 20
2.8 Selecting the application .. 20

2.9 Pre-customizing.. 20
2.10 Customizing ... 21
2.11 Testing and evaluation ... 21

2.12 Maintaining the application ... 22
2.12.1 User logs ... 22

3. Studying the database design ... 23
3.1 Identifying the application ... 23
3.2 Identifying relational databases .. 23

3.3 Examining tables and columns ... 24

3.3.1 Degree of normalization .. 24
3.3.2 Primary keys ... 26
3.3.3 Inclusion dependency ... 26
3.3.4 Data-value contents .. 27

3.3.5 Coded data-value cardinality ... 28
3.4 Understand conceptual content .. 28
3.5 Selecting the application .. 29

4. Pre-customization tasks .. 30
4.1 Pre-customization strategies .. 31

4.1.1 Compiling a list of queries ... 31
4.1.2 Designing a conceptual model .. 32
4.1.3 Filling out pre-customization forms .. 32
4.1.4 A combination of these strategies ... 33

5. Using the Customization Tool .. 34
5.1 Enter DB information .. 35

5.1.1 Enter table information .. 35

5.1.2 Joins .. 37
5.1.3 Inclusion dependencies ... 39
5.1.4 Excluding columns .. 39

5.2 Create entities .. 40
5.2.1 Creating a new entity .. 41

Copyright, all rights reserved

4

5.2.2 Naming an entity ... 42

5.2.3 Classifying an entity .. 43
5.2.4 Subclass and instance entities .. 43

5.2.5 Consists of .. 45
5.2.6 Units of measure ... 46
5.2.7 Creating terms ... 47
5.2.8 Specifying syntax .. 48
5.2.9 Specifying an SQL statement .. 49

5.2.10 Creating verbs ... 50
5.2.11 Subclasses .. 51
5.2.12 Creating adjectives .. 51
5.2.13 Intersect .. 52
5.2.14 Instances ... 53

5.3 The relation action .. 54
5.3.1 Defining relationships .. 55

5.3.2 Creating or changing a relationship ... 55

5.3.3 Removing a relationship .. 56
5.3.4 Correcting invalid relationships. .. 56

6. Customization Phase 1 - Processing entities and defining relationships 58
6.1 Processing entities ... 58

6.2 Naming the entities ... 58
6.3 Classifying the entities .. 59

6.3.1 Classifying identifiers and names .. 62
6.3.2 Specifying terms for entities .. 63
6.3.3 Types of terms .. 64

6.3.4 Specifying syntax for entities ... 65
6.3.5 Specifying SQL for entities .. 66

6.4 Defining entity/entity relationships .. 66
6.5 Defining column/table relationships .. 66

6.6 Defining identify relationships ... 68
6.7 Defining name relationships ... 68

6.8 Defining possessive relationships .. 68
6.9 Defining other conceptual relationships .. 69

6.10 Defining table/table relationships.. 69
6.11 Defining other entity/entity relationships ... 69
6.12 Non-3NF considerations ... 69

6.13 Multi-column primary key considerations ... 70
7. Customization Phase 2 - Creating new entities ... 71

7.1 Composite entities .. 71
7.2 Creating composite entities for identifiers ... 72
7.3 Creating composite entities for names ... 73
7.4 Creating composite entities for attributes ... 74

7.5 Creating composite entities representing embedded concepts 74
7.6 Creating composite report entities .. 74
7.7 Creating composite report entities with numerical components 75

7.8 Creating composite sorters .. 75
7.9 Creating dummy table entities .. 76
7.10 Creating verbs .. 78

7.10.1 Defining the verb complement... 78
7.10.2 Specifying prepositional complements .. 79

Copyright, all rights reserved

5

7.10.3 Defining verb relationships .. 81

7.11 Creating passive verbs ... 82
8. Customization Phase 3 - Extending the conceptual model................................ 84

8.1 Creating subclass entities .. 84
8.2 Creating identifiers for subtypes ... 85
8.3 Creating instance entities ... 85
8.4 Writing DB images .. 86
8.5 Creating adjectives ... 87

8.5.1 Prepositional complements: .. 89
8.6 Handling adverbs ... 90
8.7 Creating special information entities... 91

8.7.1 Entities referring to DATE data .. 92
8.7.2 Entities referring to numerical data .. 92

9. Customization Phase 4 - Enhancing the model and refining the syntax 94
9.1 Asking test questions ... 94

9.2 General rules of thumb for asking questions .. 95

9.3 Pre-customizing for further work... 97
9.3.1 Identifying and categorizing questions .. 97
9.3.2 Mini-modeling .. 98
9.3.3 Depth-first customizing .. 98

9.4 Model enhancement -- adding to the model ... 98
9.5 Adding entities .. 99

9.5.1 Adding new base entities .. 99
9.5.2 Adding dummy table entities ... 99
9.5.3 Adding composite entities ... 100

9.5.4 Adding subclass entities .. 100
9.5.5 Adding instance entities .. 100

9.5.6 Create special information entities .. 101
9.5.7 Adding verbs ... 101

9.5.8 Adding adjectives .. 101
9.5.9 Adding adverbial constructs .. 101

9.6 Adding new conceptual relations .. 102
9.7 Adding language terms .. 102

9.7.1 Adding new language (syntax) relations ... 102
9.8 Types of questions ... 102
9.9 Imperatives ... 102

9.9.1 Examples of imperatives using single objects 104
9.9.2 Examples of imperatives using compound objects 104

9.9.3 Examples of imperatives using compound objects and backward
reference ... 105
9.9.4 Examples of imperatives with subordinate qualifying clauses 105
9.9.5 Examples of imperatives using prepositional phrases 106

9.10 Direct questions.. 106
9.10.1 Examples of questions using single subjects 106
9.10.2 Examples of questions using compound subjects 107

9.10.3 Examples of questions using single objects 107
9.10.4 Examples of questions using compound objects............................... 107
9.10.5 Examples of questions using single predicates 108
9.10.6 Examples of questions using compound predicates without direct
objects 108

Copyright, all rights reserved

6

9.10.7 Examples of questions using single subjects and compound predicates
 108
9.10.8 Examples of questions using compound subjects and compound
predicates .. 109
9.10.9 Examples of questions using compound predicates and compound
objects 109
9.10.10 Examples of questions using predicates with prepositions 110
9.10.11 Examples of questions using strings of modifying clauses 110

9.10.12 Examples of questions using single adjectives 111
9.10.13 Examples of questions using compound adjectives with single
subject 111
9.10.14 Examples of questions using compound adjectives with single
objects 112

9.10.15 Examples of questions using compound adjectives with compound
objects 112

9.10.16 Prefaced questions .. 112

9.11 Generalized query types .. 113
9.11.1 Examples of questions using intransitive verbs 113
9.11.2 Examples of questions using both transitive and intransitive verbs ... 113
9.11.3 Examples of questions using anaphora .. 114

9.11.4 Examples of questions using date ranges ... 114
9.11.5 Examples of questions using numerical ranges 114

9.11.6 Examples of questions asking for sums .. 115
9.11.7 Examples of questions using adverbials ... 115
9.11.8 Examples of questions with indirect objects 115

9.11.9 Examples of with deictic time expressions .. 116
9.11.10 Examples of questions using negations .. 116

9.11.11 Examples of questions using passives .. 117
9.11.12 Examples of questions using temporals .. 117

9.11.13 Examples of questions using locatives .. 117
9.11.14 Examples of questions referring to previous questions 118

9.11.15 Examples of questions using elliptical phrases 118
9.12 Testing the model ... 119

9.13 Application development speed ... 121
10. Final test and evaluation .. 123

10.1 Testing ... 123

10.1.1 Release to target users ... 123
10.2 Application evaluation .. 124

10.3 Customization performance implications .. 124
11. CASE 1: Joins and inclusion dependencies ... 127
12. CASE 2: To be added .. 131
13. CASE 3: Entities with numerical data - unit of measure 132

14. CASE 4: Ranges (date functions) .. 134
15. CASE 5: Union of 2 identical non-3NF tables .. 135
16. CASE 6: Conceptual entities and multiple-column concepts: 137

17. CASE 7: Structured entities ... 140
18. CASE 8: Entities with numeric data - measured by 142
19. CASE 9: Non-3NF tables - tables processed as verbs 144
20. CASE 10: Verbs with embedded prepositions ... 146
21. CASE 11: Adverbials ... 147

Copyright, all rights reserved

7

22. CASE 12. Compound verbs with single subjects ... 148

23. CASE 13: Non-3NF databases - ambiguous data/multiple column primary key
 150

24. CASE 14: Subtypes of entities with multi-column keys 152
25. CASE 15: Entities with numerical data – counted-by relations 154
26. CASE 16: Non-3NF database: migrated hierarchical tables 157

Appendices

Copyright, all rights reserved

8

Preface

The objectives of this document are:

1. To document our knowledge of and experiences with Dialogue Technologies Ergo
application customization to enable customers to have access to all the information
they need to customize their application.

2. To provide a reference document to facilitate both customization and support
efforts by demonstrating how to solve specific kinds of generic customization
problems and by identifying relevant product limitations for minimizing customization
time.

Copyright, all rights reserved

9

PART 1. Advanced Customization Guide

1. OVERVIEW OF ERGO
Dialogue Technologies Ergo is a query product, which uses advanced grammar-
based Natural Language Processing (NLP) technologies. It provides end-users and
business professionals using their own natural language, such as English, with the
ability to access information stored in relational database management systems
(RDBMSs) or to control applications.

The components of Ergo are:
i) Query Interface (QI) for interactions between the users and the database:

• QI for voice users

• QI for text input
ii) Natural Language Engine (NLE) with an API for processing the queries

• Natural language analyzer

• Natural language generator
iii) Customization Tool (CT) for customizing applications:

• Conceptual modeling facility

• Model transfer facilities

Figure 1 Components of an application

Copyright, all rights reserved

10

1.1 The Query Interface

The query interface handles communication between the user and the database. It
can be text-oriented for applications with text input via e.g. the web, a special input
window, SMS, e-mail, etc., or based on using a voice front-end for converting speech
to text.

1.2 The Natural Language Engine

The Natural Language Engine (NLE) is the Ergo component that transforms queries
into structured query language (SQL) statements (or extensive markup language,
XML, etc.) that is sent to the database management system, which retrieves the
answer. The input to this component is a natural language query. The output is the
SQL command into which the input query has been translated as well as a set of
paraphrases of the input query.

The NLE is designed with an Application Programming Interface (API) so it can be
used as an embedded component in other products. In principle, the API can be
used by any program. It is up to the calling program to handle user interactions, to
use the generated SQL commands for retrieving data, and to answer users'
questions based on the data and the information returned from the API.

When an end user submits a natural language query, it is parsed. Valid sentences
are translated to an internal format using an analysis grammar for the language of
the query. The vocabulary that is used for parsing consists of the application-
independent words contained in the built-in dictionary and the application-specific
words that have been added during the customization process. The query is
translated back into natural language as a paraphrase to permit the user to confirm
that the query has been understood correctly by the computer. In cases of ambiguity,
alternative paraphrases are presented to the user for selection of the correct one.
After confirmation, the translated query is sent to the database and the answer is
displayed for the user. The query can be of the yes/no sort. For example, the user
types in the following query:

Which senior manager works at the head office?

which results in the interpretation:

Find senior managers that work at departments named head office.

Ergo can handle natural language questions, which cannot be expressed in a single
SQL query. The natural language query is translated into an answer set, which is
beyond pure SQL. Besides SQL statements, the answer set contains information on
the data representation (yes/no, report) derived from the input natural language
question and, in cases when the data cannot be retrieved by a single SQL query. It
also includes SQL statements for creating intermediate relations. Intermediate
relations are temporary relations created as SQL tables containing data to be
retrieved by a query. When the user selects an interpretation, the corresponding SQL
is sent off to the Database Management System (DBMS).

Copyright, all rights reserved

11

Figure 2 The Natural Language Engine

1.3 The Customization Tool

The Customization Tool (CT) is used to create a conceptual model by defining
relations between concepts and the database tables and columns, specifying
relevant natural language terms, and establishing relations between the words and
the database elements. When selecting tables and columns for an application, and
when processing the basic entities generated automatically by the CT, the
customizer is prompted to enter information in a series of dialog boxes. The
customizer selects the suggestions he wants or enters the information requested.
Once this basic customization is complete, the customizer defines more complex
relations in the conceptual model he or she builds.

An application in Ergo is a conceptual model. This conceptual model is a collection of
prolog facts about the tables and columns in the database, including all information
about corresponding entities, terms, and relations the NLE requires to process
queries. When users ask queries, Ergo makes use of these facts to process the
query and generate an answer. The task of providing Ergo with application-
dependent information (i.e., an application conceptual model, which includes an
application dictionary) is called customization. Applications are customized by a
customizer (i.e., the one who customizes Ergo for a specific application).

A conceptual model in Ergo is used as a formal representation between the database
and the language. It is connected to:

• A database through SQL-statements, and

Copyright, all rights reserved

12

• A language through natural language terms.

Using the Ergo CT the customizer creates a conceptual model. This model describes
all the objects, which are of interest to the users. In other words, it is a model of the
universe of discourse, which is selected portion of the real world or a postulated
world dealt with in the application. The conceptual model is represented graphically
to the customizer. The modeling technique used by Ergo is the binary ER
(entity/relationship) model. This was chosen because the expressive power of the
E/R approach and that it is simple and can easily address language concepts and the
links between them.

The conceptual model is composed of concepts (entities) and relationships (links)
between them. It is connected to the natural language terms from one side and to the
database from the other side. These can either be nouns, verbs, and adjectives.
Relationships are those that connect entities together which may denote possession,
time, place, verb and prepositional relationships.

Figure 3 Binary Entity Relationship Model

In the customization process, words needed for a given application are specified in
the model together with associated grammatical information. The relation of the
words to each other and their relationship to information in the database is also
defined. Many users can access the same customized application.

1.4 The need for Dialogue Technologies’ Ergo

The need to use Ergo may vary. Ultimately there will be a host of applications and
devices, which are controlled via voice or text commands. Initially two major
application areas have been defined. These include:

i. Command applications: These are applications where a device, application, or
service in controlled by issuing commands in natural language. This way advanced
operations can be performed without the user having to learn a set of complicated
commands. A special case is mobile services. Voice control using natural language
is one of the strongest user interfaces for mobile applications.

ii. Customer support: Since Ergo supports asking questions in natural language the
same Ergo application can service end-users both via a voice interface and a web-

Copyright, all rights reserved

13

based query interface. The result is significant savings in customer support costs and
an increased level of service. These applications include support and help-desk
applications as well as information applications.

There are certainly more areas where language-based user interfaces will become a
reality over time.

The examples in the rest of this document generally reflect a data-mining application
in which various decision makers in a company would like to access business-critical
data from the company database. A customer support application can in this context
be understood as entering frequently asked questions and manuals into an SQL
database and allow end-users to query that database for information.

1.5 Database-centric and corpus-centric applications

There are two main types of Ergo applications, database-centric and corpus-centric.
In this context a corpus is a set of type questions and answers that describe the
domain, or universe of discourse (UOD), that the application should cover. A type
question is a formulation of a question requesting a specific piece of information. E.g.
How long is the ship? represents a question about the length of a particular ship. The
same question can be formulated in a number of different ways (e.g. What is the
length of the ship?, How long is the vessel?, etc.). Each of these requests the same
information and each formulation can serve as representation for the type question.

1.5.1 Database-centric applications

Ergo can be used for building database-centric applications, taking its starting point
in the answers, i.e. the existing databases. A typical example is the Yellow Pages.
The Yellow Pages contain information about names, addresses, telephone numbers,
etc. usually stored in a huge database. The purpose is to make this, and only this,
information available to users.

In this case the knowledge domain of the application is completely defined. In other
words, the answers that the application can provide are known a priori. As a
consequence, all different questions that can be asked to retrieve these answers are
limited in number, and can, in principle, be listed. Database-centric Ergo applications
can thus reach a coverage of the user questions approaching 100%. The pre-study
of a database-centric application is more focused on the design of the databases and
how this design can be represented in the domain model, than on how questions can
be formulated. This is not surprising since the database content restricts how
questions can be posed.

1.5.2 Corpus-centric applications

In corpus-centric applications Ergo takes its’ starting point in the users' questions, i.e.
what the users actually want to know. The knowledge domain or UOD is more
difficult to define in this type of applications since it is hard to anticipate what users
would like to know and how they are going to ask about it. For corpus-driven
applications pre-study mainly consists of:
i) Pin-pointing the knowledge domain (what) and

Copyright, all rights reserved

14

ii) Gathering as many authentic end-user formulations as possible about this domain
(how).

It is very important that the collected data is as authentic, and as large as possible,
since it is almost impossible to cognitively foresee user questions. This data makes
up the corpus.

Based on the corpus a suitable database structure is defined, including defining
tables and columns in the tables.

1.5.3 Comparison between database-centric and corpus-centric applications

The main difference between the two types of applications is in how the UOD is
determined and how the database structure is defined.

In the database-centric approach the database, including all data records, is given
from the beginning, something which largely also defines the corpus.

In the corpus-centric approach the corpus, and the database structure, is refined in a
series development stages, each involving testing on a group of users. The database
is populated with data during the development process. This is described in more
detail in Appendix B.

 Database centric Corpus centric

User question Induced from database Empirical pre-study and
study of question logs

Model Governed by database
design

Governed by user
questions

Database Given Governed by model

Knowledge domain Identical with content of
database

Combination of initial
hypothesis, pre-study and
analysis of user data.

Table 1 Characteristics of the two types of applications

A particular strength of Ergo is that both types of applications can be combined.

For example, two knowledge domains belonging to database-centric and corpus-
centric applications, respectively, were combined into a single customer service
application. The database-centric knowledge domain contained area codes for
telephony (e.g. allowing questions like Where does 0611 go? and What's the area
code for Härnösand?). The underlying database contained one table with three
columns with:

• Area code (e.g. 0611),

• Area (e.g. Härnösand) and

• Country (e.g. Sweden).

The corpus-centric knowledge domain covered user questions about
telecommunication products and services (e.g. allowing questions like Can I order

Copyright, all rights reserved

15

ADSL 8.0 Mbit? and How often does the phone bill come?). The structure of this
database was determined by user queries.

In the combined application users could ask both about area codes and general
questions about products and services, with the application querying two different
databases.

Copyright, all rights reserved

16

2. THE ERGO APPLICATION DEVELOPMENT CYCLE
Development of an Ergo application usually entails a project involving participants
from several parts of an organization, including target users, systems programmers,
Database Administrators (DBAs), and Ergo administrators and customizers. It is
useful for the project team to have an overview of the tasks required for developing
an Ergo application from start to finish. This chapter discusses the things the project
team, especially the customizers (the person building the application), must think
about before starting work on an Ergo application.

2.1 Planning an Ergo project

In general terms, a project can be identified by these characteristics:

• A well-defined objective,

• A definite start date,

• A definite end date, and

• A well-defined end product.

For an Ergo application development project, the objective is to enable users to
access relational database information by using their own natural language. Given a
start date and an end date, the end product of an Ergo application development
project is a fully customized application that target users can use to ask natural
language questions. There are a set of standard tasks that an Ergo application
development project team should consider as they set a project plan, especially the
first time they use the product. These include:

1. Determining the target users
2. Gathering a representative corpus

(in the case of corpus-centric application)
3. Studying the DBMS implementation

(in the case of a database-centric application)
4. Identifying application areas
5. Studying/defining the database design
6. Identifying application options
7. Selecting the application
8. Pre-customizing - preparing for customization
9. Customizing
10. Testing and evaluation
11. Maintaining the application

2.2 Determining the target users

With knowledge of Ergo and the product, the project team should make certain that
the customers’ target users are well defined in terms of:
1. Their role
2. Their number
3. Their need to use Ergo.

Selecting the target users does not have to be done first, but it is normal after
appreciating the advantages of Ergo to begin planning by examining who might use a

Copyright, all rights reserved

17

potential application. Later, after the database has been examined and the
application selected, it may turn out that the original set of target users may have
shifted because of the information contained in the application selected. This will vary
from case to case, and it may also depend on the rigidity with which the set of target
users are identified.

Role
There may be different strategies and objectives if the target users are internal to the
company or external, professional or private users, consumers, managers or non-
managers, etc. This must also be coordinated with the number of target users
involved in the project and with the size and seriousness of the application.

Where managers or organizational planners are end users, it is very likely that the
information is vital for decision-making. If increased information access is only a
general intention, applications may be more incrementally enhanced and on a more
leisurely trial-and-error basis. Applications addressing large numbers of end-users
require serious consideration.

The extent to which users are distributed over several locations should also be
planned for. Because users will provide feedback to customizers, the utility of this in
the context of organizational procedures must be considered.

The most demanding applications are those addressing consumers, citizens or other
large groups of end-users, particularly for corpus-centric applications.

Number
It is important to have an idea of the number of target users there will be. The
number of users will affect:

• The vocabulary in the application

• The pre-customization strategy

• The post-project evaluation

If the number of target users is large, beyond some threshold, it may be expected
that they will have less of an opportunity to directly affect the determination of the
vocabulary in the application. In addition, it may be expected that there will be a
broader degree of individual differences with respect to language use. This will
impact the pre-customization strategy and the implementation of the application.

If the number of target users is large, it may make it more difficult to generate a
complete 'list of desirable questions," which will necessitate an alternative strategy.

If the number of target users is large, it may be more difficult to get immediate
feedback or quick answers to questionnaires that may be part of post-project
evaluation.

2.3 Gathering a representative corpus

In the case of a corpus-centric application the application domain, or UOD (Universe
of Discourse), is not necessarily well known in advance. There are several ways to

Copyright, all rights reserved

18

try to determine the application domain, including:

1. Studying documentation describing the target UOD, e.g. manuals, various

instruction books, etc.

2. Interviewing individuals with a knowledge about what the users might want to ask,
e.g. customer service staff, people involved in analysis of consumer behavior,
marketing staff, etc.

3. Focus group studies.

4. Logging and analyzing actual user queries.

Of these the last one is the most powerful, although use of 1-3 might be valuable. In
either case the best method is to make an initial assessment of the corpus, deploying
the system and then testing it, logging all questions, on a small group of users and
the gradually increasing the corpus and UOD in successive stages. In each new
stage the application is tested on a larger user group.

2.4 Studying the RDBMS implementation

For database-centric applications the project team may desire to focus on a particular
part of their database, especially if they have more than one DBMS implementation,
with one being more suitable for an Ergo application. They may also be in the
process of migrating information, redesigning their databases, normalizing them, for
example. Thus, the current status of their database design, together with their
business objectives, will determine their needs and interests.

The application development goals will very likely vary depending on whether the
project is an early test for getting familiar with the technology or on an acute need for
an immediate production application.

Here security will also play a role in the selection of subsets of the database. The
project team will very likely manage key confidential information very carefully.

Note: An Ergo application can access only one database subsystem at a time.

2.5 Identifying application areas

After studying the database implementation, the project team will select a set of
subsets of the database for consideration for inclusion in the application development
project. These are application areas.

For database-centric applications the application areas are often subsets of larger
total data base structures. We are making a distinction between application areas
and application options because experience with "real life" data bases indicate that
strategic corporate information is usually organized into information subsystems -
finance, personnel, marketing, R&D, inventory, purchasing, and so forth. Experience
also shows that actual applications for most users will be subsets of such application
areas, unless a senior manager would like an entire database or application area

Copyright, all rights reserved

19

customized. The ability to modularize applications efficiently would seem to render
the customization of a very large database unnecessary because some kinds of
questions linking particular sets of tables and columns would never be asked. For
example, we would probably never ask:

What was the bottom line for the green bolts in the administration dept?

A question such as this would imply linking tables and columns from finance,
personnel, and inventory application areas. Of course, linkages between these
application areas are conceivable, but practice shows the usefulness of making a
distinction between application areas and application options. For application areas
we are assuming that:

1. The data base(s) selected will serve as application area superset(s) from which a
set of alternative application area subset(s) can be identified
2. There can, but need not be, more than one application area selected
3. The selection of the application area depends solely on the design of the data
base and user needs of the information system
4. The application area itself is a superset of a set possible application options
related to that area.

The identification of application areas often depends on the storage structure of the
relational data base management system and the particular way the local Database
Administrator (DBA) has structured his information. The selection of these application
areas will depend on:

• The application development goals

• The needs and interests of Ergo users the organizational security interests

• The design of the database.

2.6 Studying the database design

Studying the database design is a major task the project team has to do. Knowledge
of the database is also important for the customizer. When studying the database
design, the project team must answer these questions:

1. Is the database truly relational?
2. How many tables and columns are there?
3. In what normal form is it?
4. Does every table have a primary key?
5. Is there a preponderance of numerical data?
6. Is there a lot of coded data?
7. What kind of data values are dates?

In the next chapter we take up these questions in detail.

In the case of corpus-centric applications the project team must design the structure
of the database, including defining tables and columns, based on the available
corpus. The data is entered in the tables during the customization process. In this
case it is important create a structure that can be expanded and refined as we get an

Copyright, all rights reserved

20

increasingly representative corpus.

2.7 Identifying application options

After identifying the database and studying its structure, it may be the case that a
number of application options can be identified. This often depends on this size of the
database. When there are a lot of tables, usually more than 15 or 20, it becomes
apparent that subsets of the entire database can form applications of their own. User
access to information is also important. In some organizations, users may not have
access to an entire database. They may be restricted to accessing selected tables,
columns, or views. In such cases, it is useful to identify all the application options and
prioritize them both with respect to urgency for the organization and with respect to
the speed the application can be developed.

2.8 Selecting the application

After the application options have been identified, the project team selects a set of
tables and columns for customization. Criteria for selecting an application may
include these:

• Priority of the application option

• Project duration

• Impact on organization.

Among the factors determining the project's duration are:

• Anticipated pre-customization time

• Anticipated customization time

• Projected time for introduction of the application into production.

• Projected period of end-user evaluation

Preparing for customization will take time. So will customizing the application and
promoting for use by target users. And the users will user the product a given period
before generating feedback to the customizer, perhaps for enhancing the application.

Finally, an application will have an impact on the organization.

2.9 Pre-customizing

After selecting an application, a clearly understood pre-customization strategy should
be adopted. The customizer has to prepare for customization, especially if the
application is large. There are at least four possible pre-customization strategies:

1. Compiling a query list
2. Drawing a conceptual model
3. Filling out customization forms
4. Some combination of these.

Copyright, all rights reserved

21

These approaches will be examined in a separate chapter.

2.10 Customizing

There are various phases and strategies of customization. There are four main, task-
oriented phases of customization:

1. Phase 1: Processing entities and defining relationships
2. Phase 2: Creating new entities
3. Phase 3: Extending the conceptual model
4. Phase 4: Enhancing the model and refining the syntax.

Each of these phases will be examined in detail. When working developing an Ergo
application, it is possible to conceive of two main customization strategies:

1. A Breadth-First Strategy
2. A Depth-First Strategy

A Breadth-First Strategy: A breadth-first strategy consists of concluding each
customization step before proceeding with the next one. Very likely, a customizer’s
first customization effort will proceed in this fashion, especially if he customizes a
database where answers to queries must be obtained after crossing many tables.

Note: We recommend starting your application with a breadth-first approach. This
consists of the easiest tasks. Once completed, the work done on these tasks can be
saved, and it will not have to be done again.

A Depth-First Strategy: A depth-first customization strategy consists of processing
an individual cluster of entities as far as possible before moving on to the next cluster
of entities. 'As far as possible' means that there is a limit to the 'depth' one can
initially customize because the identification and definition of conceptual and
language relations depends on the prior processing of other entities. Very likely,
some experience will be required before a depth-first strategy can be successfully
carried out.

Note: A depth-first strategy is useful when working on the model-enhancement phase
of customization.

2.11 Testing and evaluation

Testing occurs in the process of application development as well as by end users
after the application has been released to them. When testing and evaluating, we
make sure that:

• Queries we expect to be processed are actually processed

• The SQL generated by the queries is correct

• Queries not processed are documented and sent to the customizer for
implementation.

Copyright, all rights reserved

22

The application can be released incrementally to the target users, or the customizer
may choose to achieve a given level of customization and language coverage before
releasing it to users.

2.12 Maintaining the application

The number of questions you can ask in any natural language is infinite. This means
that the development of an application will never be 'final'. We must accept what is
practical and useful. It is also important that we recognize that applications can be
enhanced incrementally. This makes proper maintenance of the application
important.

Databases may also change. Usually, an application must be re-customized if the
database normalization level has changed, or if its size has diminished. But if tables
have been added to the database, or if some columns have been added to a table,
the effort to update the application is easier, especially if the application is well
maintained. To maintain an application:

Make sure you back up completed work you know is correct.
Give the latest correct model a recognizably different name from your working
models to save time and confusion. Document queries that do not work, including
any error messages they may generate. Document any solutions to difficult tasks you
find. Do not let too much time pass between CT sessions, especially while working
on an on-going project. Make plans for a back-up customizer and make sure
pertinent information has been passed on to him/her.

Keeping these things in mind will contribute to the successful completion of a Ergo
application development project.

2.12.1 User logs

All questions asked to the system are logged and can be analyzed with the analysis
tool LogView. LogView, among other things, logs all questions that did not receive an
answer and analyses and sorts them. These questions can then be used for detailed
analysis and decision about how the application should be updated.

Copyright, all rights reserved

23

3. STUDYING THE DATABASE DESIGN

Studying the database design is the first major customization task. Understanding the
entire database design is necessary before you can select a database, or a subset of
one, for a Ergo Application. In addition, we must study the database structure in
order to determine ahead of time which customization strategy to adopt. Readjusting
the database tables through the creation of views or addition of columns may also be
necessary. An optimum database for an Ergo application should

• Be a relational database.

• Be in third normal form (3NF) or use views to give the appearance of 3NF.

• Contain columns that can be used to identify and name or describe each record in
a table.

• Contain a preponderance of CHAR data values.

• Avoid having null values in columns unless they make sense, i.e., unless they are
semantically meaningful.

• Contain as little data as possible in coded form, such as GE for Germany.

• Express dates in DATE format.

• Express numbers in numerical formats.

The customizer must know the database well to use the CT correctly. The customizer
has to process entities and define relations, often based on the structure of the
information found in the database. If this is not done correctly, the users will not be
able to ask all the questions they expect to be able to ask.

3.1 Identifying the application

Once the target users have been identified, the project team focuses on identifying
and selecting an application. Usually this will be a subset of a database the users
want information from. Identifying appropriate application subsets of the database
and selecting one of them requires focusing on the following factors:

• Identifying a true relational database (if you have more than one DBMS, or non-
relational implementations)

• Examining the tables and columns, identifying their:
- degree of normalization
- primary keys
- inclusion dependencies
- data-value content
- coded data-value cardinality

• Understanding the conceptual content of the database for correct customization

• Selecting the subset of the database that most corresponds to the needs or
expectations of the target users.

3.2 Identifying relational databases

The fact that information is stored in tables and columns and managed by a relational
database management system does not mean that the database is a relational
database. Be sure your database is, in fact, relational! For Ergo, the main criterion for

Copyright, all rights reserved

24

identifying a relational database is this:

Each single data value in the database has one and only one semantic interpretation.

A relational database contains records of information stored in tabular form. Each
field of each record contains a data value or is blank. Ergo assumes that the data
value or the blank contains only one meaning. If this is not the case, the database
cannot be said to be relational.

For example, migrating from a hierarchical Data Base (DB) to tables and columns in
a RDBMS, while storing the hierarchical sequential key, will lead to storing
information in data fields that contain more than one meaning - here, a functional
meaning and a meaning with respect to a place in the hierarchy. After some
database migrations, the hierarchical sequential key is broken down into its
components. Of course, Ergo can work with these databases; but some of the
intended meaning may be lost or difficult to customize, especially if complicated
referential integrity relations become built into the design the information is migrated
to. In short, migrated information should be examined closely.

Those that are most friendly are those, that are in Third Normal Form (3NF). When a
database is in 3NF each table represents a separate concept, and the columns are
usually attributes of the concept. An application can be easily developed when the
database is in 3NF, because all the concepts and their attributes are clear in
principle.

Non-3NF databases are more conceptually complex, and hence more complex to
customize. Often Non-3NF tables contain embedded concepts. Developing an
application for a non-3NF database requires considerably more thought and planning
to isolate the concepts and their relations and customize them correctly.

You may have a database structure with a mixed design. Some tables may be in
third normal form, first normal form, or not even in first normal form. For the first
application, the project team should focus on subsets of the database that are in third
normal form where possible.

3.3 Examining tables and columns

It is important to study the structure of your database. This includes examining the
degree of normalization, primary/foreign key relations, inclusion dependencies, data-
value content, and coded data-value cardinality.

3.3.1 Degree of normalization

Database structures may be in

• Third Normal Form - each field data value is conceptually dependent on the key,
the whole key, and nothing but the key.

• Non-Third Normal Form - some fields are not conceptually dependent on the
primary key.

Copyright, all rights reserved

25

Third normal form: As noted above, Ergo works best with databases that are in
Third Normal Form (3NF). When a relational database is in 3NF, each table usually
corresponds to an independent, substantive concept, independent in a sense that its
existence does not depend on the existence of another concept.

When a database is in 3NF, customization is easier because the main concepts and
concepts that are attributes are easily identifiable and are clear in principle.
Customization involves the specification of main concepts, and their relationships to
other main concepts, and the possessive relationships they have to concepts that are
attributes. The linking of language terms to each of these concepts become easier
since each single data value has one and only one semantic interpretation. The NLE
has a precise mapping of terms to concepts.

For example, an EMPLOYEE table corresponding to the concept employee, does not
depend on the existence of a PROJECT table, corresponding to a concept,
PROJECT. Each of the columns are usually attributes of the concept, such that the
entity represented by the concept can be said to possess the attributes. In other
words each attribute must be a fact about the key, the whole key and nothing but the
key. Having an EMPLOYEE table with columns like EMPNO, ENAME, AGE, WAGE,
etc., we may say that a given employee number, name, age and wage are attributes
of a given employee, or that employees have an employee number, name, age, and
wage.

Non-third normal form: When a database moves away from 3NF, the column
entities may not be attributes of the table entity. Customization requires considerably
more thought and planning to isolate the main concepts and their identifying
attributes. Non-3NF databases are conceptually more complex, and hence more
challenging to customize because non-3NF tables contain embedded concepts
(whose attributes are not dependent on the primary key of the table).

For example, if a non-3NF Employee table had a LOCATION and LOCATION
ADDRESS column, the concept of location would be embedded in the employee
concept, because location' has an attribute that is not an attribute of the concept
represented by the table. For example, a 'location address' is not an attribute of the
employee, it is an attribute of location. Embedded concepts have to be identified,
before an application can be customized correctly.

To summarize, a table is said to be Non-3NF if:

• Some sets of columns represent embedded concepts where some of the columns
are identifiers, and others are names or attributes dependent on the embedded
identifier.

• Some columns may represent ambiguous meanings determined by a flag in
another columns.

An entire table may actually be an extension of another table linked by a join-path. All
columns in the extension table could be attributes of the other table. In this case,
some tables may be processed as verbs or redundant entities can be deleted. There
are techniques to remedy and create the appearance of a normalized database

Copyright, all rights reserved

26

through the use of views or creating new conceptual entities to achieve the same
effect as views.

3.3.2 Primary keys

The primary-key structure of a database is important. If the DB is in 3NF, then
customization is straightforward, noting only that some multiple-column-key tables
represent complex concepts rather than a single concept and a set of attributes.

Primary keys of the tables are the columns whose data values identify instances of
the concept represented by the table. Thus, EMPNO '101', identifying EMPNAME
'Smith', identifies the instance of an employee named Smith in an EMPLOYEE table.

Foreign key columns are columns containing data values that are found among the
data values of a primary key in another table. They can be excluded from the
customization since the same information does not need to be found in two places. A
join-path is established between primary keys and foreign keys to access the
information from both tables. Often entities corresponding to foreign key columns can
be deleted.

An exception to this is when the foreign key column represents a concept that is
different from the concept of the primary key. An example of this would be if we have
a EMPNO column that is the primary key identifying employees in an EMPLOYEE
table, and a 'manager' column that is a column somewhere else it the database
containing data values that is a subset of the data values in the EMPNO column.

Note: If a foreign key column represents a different concept than that represented by
the primary key it references, the entity it corresponds to should not be deleted.

3.3.3 Inclusion dependency

If a column is a subset of another column then there should be an inclusion
dependency relation between them. For instance, if you have a MANAGER column
and an EMPNO column, then you could define an inclusion dependency between the
two and specify that the MANAGER column is a SUBSET of the EMPNO column.

Note: In Ergo, an inclusion dependency may be found in a single table. This is the
case where one column of the table contains a subset of data values contained in the
primary key column. "These columns usually represent different concepts than that
represented by the primary key column.

Usually, an inclusion dependency relation is a relation between a super-type concept,
e.g., employee, and a subtype concept, e.g., manager. Conceptually, inclusion
dependencies enable attributes of a super-type concept to be inherited by a subtype
concept. For example, if an employee has an address, then a manager will have one,
too.

Non-3NF databases: If the DB in not in 3NF, then at least one table contains an
embedded table requiring special processing, usually setting up a concept entity that
would represent another table if the DB had been in 3NF. Also, if a non-3NF DB

Copyright, all rights reserved

27

contains multiple-column keys, special situations arise for customizing linguistic
subtypes, i.e., subclass entities needed to enable users to ask specific types of
questions. If a non-3NF DB is large, with many multiple-column keys, then
customization can become complex and sometimes the whole entity can be
processed as verbs. See Creating verbs on page 78.

Multiple-column primary keys: In Ergo entities that represent the primary key of a
table are classified as an identifier, which uniquely identifies each row of the tables
as well as the concept represented by the table. If the table has a primary key with
more than one column or a multiple column primary key, none of the individual
entities identify the table. We have to create a composite entity that consists of the
primary columns and let this entity identify the concept corresponding to the table. In
others words, we must create a composite entity consisting of primary key columns.
This composite entity will be the identifier. We usually classify the component key
columns (entities) according to the concepts they represent. Only the composite
entity is classified as an identifier.

Note: If components of a multi-column primary key represent different concepts other
than an identifier, they may be treated as such, but the entities corresponding to
them may not be deleted.

See 6. Customization Phase 1 - Processing entities and defining relationships on
page 58, for a discussion on composite entities.

3.3.4 Data-value contents

Data values must also be scrutinized. In a relational DB, each field in a table
represents a single data value, and by implication, each data value has a single
semantic interpretation.

In migrations from hierarchical DB’s, sometimes the hierarchical sequential key is
stored. This data value has both a functional interpretation and an interpretation
based on its place in the hierarchy. Strictly speaking, such DB’s are not relational.
Ergo can handle tables with such columns but all the semantic information cannot be
preserved without altering the DB, usually by breaking up hierarchical-sequential-key
column into its component columns.

Another example of this occurs if a column contains data values with multiple
interpretations by design. For example, a financial application may contain a column
like SSNO_TAX_NBR, containing a set of numbers, which are either a Social
Security Number for individuals or a Tax Numbers for firms. In such a design, there is
usually a separate flagging column.

In fact, this kind of design is not strictly relational either, for we cannot determine the
meaning of a data value in the SSNO_TAX_NBR column simply by looking at it. We
need more information. Ergo can also handle such cases, but the customization
process for preserving semantic integrity is more complex. Thus, first applications
should not include a lot of such columns.

Copyright, all rights reserved

28

DATE data values: DATE data values should be in DB2 DATE format. This will
enable questions like:

How many jobs were processed between January 1st and January 15th?

Date data values in other formats (INTEGER, CHAR) can be processed by Ergo, but
at the moment language coverage is limited for these formats.

Numerical data values: If you want to ask questions about numbers, the data
values the queries refer to must have numerical formats. Language coverage is
limited for number stored as CHAR, for example.
Databases with a majority of columns representing numerical data values pose
special language problems and require careful customization. SQL with column
functions (MIN, MAX, SUM, AVG, COUNT) or SELECTS with arithmetic operations
can be linked to entities. Linking language terms to these entities require special
language clarity to avoid ambiguity and conceptual confusion. Often homonyms must
be specified. For example, the concept, 'total resource', may mean SELECT (col1 +
col2 + ... + colas), and it may also mean SELECT SUM (colt) or even SELECT SUM
(col1 + col2... + coln). Some applications may require the creation of many entities
with arithmetic operations. We recommend that customizers avoid as their first
application databases having a large number of numerical columns, unless they can
give clear and precise meanings to the arithmetic operations they want to represent
conceptually.

3.3.5 Coded data-value cardinality

In a relational DB, each data value has its own meaning. Sometimes these meanings
are coded, for example, when M and F are codes for male and female in a SEX
column. We can create instances of linguistic subtypes for each coded data value in
a column. If there are many columns with coded data values, or if there is a column
with many coded data values, then this will add to the complexity of the conceptual
model. If there are many columns with coded data values, then we recommend that
the number of data value codes not be significantly greater than 10. If there are only
a few columns with coded data values, then we recommend that the number of
codes not be greater than 20.

The natural language engine interprets the set of coded data values as disjoint,
mutually exclusive instances.

3.4 Understand conceptual content

It is important for the Ergo user to understand exactly what information is wanted in
response to their queries. For example, in the question:

List the branch offices,

a user might want the list of branch office names together with their office numbers, if
the branches have one. On the other hand, the user may only want the names of the
branch offices, identified by their geographic location, or both. The customization

Copyright, all rights reserved

29

process of getting the expected answer to this query is different.

The matter is complex in DB’s with multiple-column primary keys, the component key
columns are foreign keys of different tables. For example, a table with CUSTNO,
PRODNO, and SHIP_DATE columns, where CUSTNO, from a CUSTOMER table,
and PRODNO, from a PRODUCT table, together constitute the primary key, it is
important to understand what this table may mean conceptually. Here, we would
expect it to mean that

A product was shipped to a customer on a particular date.

This is different from an ADDRESS column that may represent an attribute of an
employee. Complex conceptual content requires special customization procedures.

3.5 Selecting the application

Large DB’s may contain many application areas. An application area may also
contain several semantically meaningful subsets, all of which have specified limited
access for information security reasons. All of these meaningful DB subsets
correspond to application options.

For fast application development, the lower limits of information required for each
possible application should be identified and adopted as the basis for the application.
Later, if information requirements change or augment, tables and columns can be
added to the application.

The final selection of the application should be made with well-defined project start
dates and end dates. The first application should be manageable within a specific
time frame.

Copyright, all rights reserved

30

4. PRE-CUSTOMIZATION TASKS

After identifying feasible subsets of the database, the project team will identify
application options for implementation. Among the criteria for selecting an option are:

• The target users identified

• The application objectives

• The size of the databases

• The pre-customization strategy anticipated

• The estimated customization lead-time

• The total project time frame

Target users: An application is selected with a well-defined set of target users in
mind.

In the process of customization, it is useful to involve end users in the implementation
process. If the group is small, they may all possibly make contributions. If the group
is large, a select group or representative can be designated to participate. End user
participation is most useful in the pre-customization process and in the testing
process. In the pre-customization process, end users can contribute ideas about
syntactic and semantic coverage by listing possible queries, filling out pre-
customization forms, or reviewing the pre-customization designs of the customizer.

In the testing process, the end users can assist the customizer in testing his
application through the various phases of the customization process, providing
incremental feedback as the customization process proceeds.

Application objectives: The business objectives of the application should be clear.

Database size: The first application should contain a total of no more than 100
columns. Usually first applications are pilot projects, leading to enhanced
competence in customization skills.

Pre-customization strategy: When selecting an application, a clearly understood
pre-customization strategy should be adopted. There are four basic approaches, all
of which are discussed later in this chapter.

Customization time: For first applications, entities are usually processed at a rate of
about 8-10 per hour through the first three customization phases. This includes time
required to test the model during these phases. The model refinement process can
take more time, which usually depends on the ability of the customizer.

Time frame of the project: The time frame of the project should be well defined. As
soon as the starting date has been identified, the duration of the project should be
established as definitely as possible. This will enable the expenditure of resources to
be estimated with greater accuracy. Because unforeseen problems may arise that
cause slips and delays, a plan for terminating the project should be in place, if these
problems are deemed major, and if they indicate that excessive use of resources will
result. Such problems should be anticipated as far as possible in advance, given a

Copyright, all rights reserved

31

full understanding of the state of the product.

4.1 Pre-customization strategies

There are at least four possible pre-customization strategies:

1. Compilation of a query list
2. Design of a conceptual model
3. Filling out customization forms
4. Some combination of these.

4.1.1 Compiling a list of queries

Compiling a list of queries is important for determining which tables and columns in
an application area will be selected for customization at the test site. We will always
need a query list to determine the data base scope of the application, regardless of
the customization strategy selected. Compiling a query list for purely linguistic
reasons can be useful if the application is small or if the number of target users is
small. The query list can be compiled by the customizer, or he/she can solicit
possible desirable queries from target users.

Note that there are two linguistic objectives to be achieved in the compilation of such
a list:
1. Syntactic objectives
2. Semantic objectives.

Ideally, such a list of queries would be syntactically exhaustive in terms of the
product's grammatical capabilities. But the customizer should be aware of this
syntactic objective when he compiles his list of questions. Planning for syntactic
coverage can be done by the customizer himself.

The customizer also has the semantic objective of including in the application
dictionary all the words the target users wants to use. Solicit lists of queries from
target users can be a good way of doing this.

Note, however, that as the size of the application increases, as the number of target
users increases, or as the organization role of the target users varies, the usefulness
of this approach to decide linguistic coverage declines, for these reasons:

• If the application is large, there is a greater probability that the query list provided
by target users will be repetitive and not exhaustive, that is, they will not be able to
think of all the questions they might really want to ask;

• If the number of target users is large, it may take a longer time to process and
compile the lists of queries submitted, and not all the target users may submit
questions, or all the questions, they may want to ask;

• If target users are managers, they may not have the time to devote their full
attention to this task, thus making it perfunctory, and of little value to the customizer.

Copyright, all rights reserved

32

4.1.2 Designing a conceptual model

Designing a conceptual model can also be useful if the application is small or if the
number of target users is small. The conceptual model can be designed by the
customizer, or by a customization team.

Note that there are two linguistic objectives to be achieved in the design of a
conceptual model:
1. Syntactic objectives
2. Semantic objectives.

Ideally, the entity specification of the conceptual model would be syntactically
exhaustive in terms of the product's grammatical capabilities. But the customizer
should be aware of this syntactic objective. The customizer also has the semantic
objective of including in the application dictionary all the words the target users wants
to use. The conceptual model should include synonyms for the terms that he
associates with the entities in the model.

Note, however, that as the size of the application increases, the utility of designing a
complete conceptual model declines, for these reasons:

• If the application is large, there is a threshold beyond which designing a complete
conceptual model will take more time than is desirable;

• As the number of entities increases, there is a threshold beyond which the design
of a complete conceptual model becomes impracticable;

• If the application is large, there is a greater probability that errors will emerge in
the conceptual model design, and if there is a time limit involved, the customization
process based on an inaccurate design, and this may necessitate modifications of
the customization at some later point in time, thus delaying the project.

4.1.3 Filling out pre-customization forms

For large applications, or when the number of target users is large, or both, designing
and filling out pre-customization forms would seem to be the best strategy. Such
forms would include the following information:

• For tables, their primary keys and join-path links

• For tables, their entity names, terns, synonyms, and syntactic information

• For columns, their referential integrity information

• For columns, their entity names, terms, synonyms, and syntactic information

• Adjective entities to be added, with their names, terms, synonyms, and syntactic
information

• Verb entities to be added, with their names, terms, synonyms, and syntactic
information

• Sub-type entities to be added, with their names, terms, synonyms, syntactic
information, and with their SQL image.

Copyright, all rights reserved

33

4.1.4 A combination of these strategies

Very likely, the customizer will select some combination of these strategies, given the
size of the customer application, the size of the target user group, and his time
constraints. Generally speaking, the customizer will find these guidelines useful:

• A list of queries specifying syntactic and/or semantic coverage would be useful for
guaranteeing a broader grammatical scope in the application. The customizer can do
this himself.

• A rough conceptual model would be useful for identifying join-paths, referential
integrity constraints, and required verbal relations.

• Pre-customization forms would be most useful in larger applications, especially if
the number of entities exceed one hundred, or somewhere thereabouts.

• Participation of end users can provide important input and feedback, whatever
pre-customization strategy is adopted.

Copyright, all rights reserved

34

5. USING THE CUSTOMIZATION TOOL

In rework tables you
specify what database
structure the model has.
You should specify the
JOIN-PATHS and
INCLUSION
DEPENDENCIES that
you have found in the pre-
customization phase. You
should specify the primary
key and columns and
exclude columns you do
not need.

You do all this using the
Mode ➔ DB and Action
➔ Add tables, Add
columns.

Customization links words
that you are going to use
in your queries to the
database tables and
column. You have to
define these words as
entities. This is done by
assigning a term,
classifying, defining the
syntax and maybe adding
SQL statements to the
entity. Additional entities
may need to be created if
there is no data base
representation for the
entity

Mode ➔ Lang and Action
➔ Add entity

As with any entity,
additional entities must be
related to other entities.
Relationships are formed
based on the entities
classification. There are
both Language and
Conceptual relationships.

You do this by
dragging/dropping one
entity on top of another in
the graphical interface.

Figure 4 Customization process

Copyright, all rights reserved

35

5.1 Enter DB information

In the CT you enter information about the database tables and columns – this
becomes part of the domain model. The engine needs to know the name of the
database to be used as well as information about tables and columns.

5.1.1 Enter table information

To enter table information press Mode ➔ DB and Action ➔ Add tables.

Figure 5 Opening of the "Add tables" window

When you press Add tables a screen appears that prompts you to enter the name of
the database and tables.

Figure 6 The "Add tables" window

Press Add and Confirm to complete the list of database tables

Once you have entered all tables you can add the columns of each table. To add the
columns, you press Action ➔ Add columns. Enter the name of each column for each
table – press Add for each new column.

Add additional information for each column – define the type of data you have in
each column by double-clicking on each column name, and select the data type in
the Edit column screen:

Copyright, all rights reserved

36

Figure 7 "Add colums"and "Edit columns" windows

The result from the example above look like:

Figure 8 Graph DB mode

You can now create keys, join-paths, inclusion dependencies and exclude columns
that you decided on in the previous phase. You should also exclude foreign keys and
any other columns that you do not want to include in your model. Open the
“Properties of columns” window by double-clicking on the column in the graph:

Figure 9 Defining columns and keys

Copyright, all rights reserved

37

5.1.2 Joins

A join-path is established between the primary key of one table and its foreign key in
another table. This enables the Natural Language Engine to select information from
different tables in a single query. More importantly, if a concept from one table
contains an attribute associated with another table, a join-path enable a relationship
to be established, thus linking entities across tables. For instance, if you have the
EMPNO column in two tables, e.g., EMPLOYEE and DEPT tables, then you could
connect the two tables with a join-path. If an employee has a department phone
number, e.g., DEPT PHONE, then this relationship can be defined.

To define a join path, click on one of the tables and drag it on top of another table –
this will open the window below:

Figure 10 Defining joins and inclusions

Tables must only be joined with one join-path.

Except for multi-column primary key whose components are multi-column foreign
keys, only one single-column join-path should be made between the two tables.

So, if these two tables, EMPLOYEE and DEPT also have a column called DEPTNO,
or 'department number', you can choose which join-path to make: either the join-path
between the EMPNO columns or between the DEPTNO columns, but NOT BOTH.

If you define more than one direct join-path between two tables, Ergo assumes at
least one table has multiple-column primary keys. If there are more than one join-
path links between a pair of tables Ergo interprets this as a multi-column join-path.
For example if a table has a two-column key that can be found as a foreign key in
another table with, say, a three-column primary key, you may join both columns to
the corresponding columns in the second table.

Join-paths cannot be circular. If you have connected the employee table and the
department table with a join-path and you have connected the department table with

Copyright, all rights reserved

38

the address table then the employee table and the address table automatically has a
connection between them, and you should not make a join-path between them. What
order to connect the tables is somewhat arbitrary, but connections should be made to
the most important table. So, if you are dealing with an employee application then
you could connect the employee table to all the other tables like spokes in a bicycle
wheel.

Concerning designing what join-paths should be the best paths let us take this
hypothetical example.

Table: Insurance Policy
COL1: POLNO(Primary key)
COL2: REGION_CD
COL3: DISTRICT_CD
COL4: BRANCH_CD

Table: REGION
COL1: REGION_CD (Primary Key)

Table: DISTRICT
COL1: REGION-CD(Primary Key)
COL2: DISTRICT CD(primary Key)

Table: Branch Office:
COIL: REGION_CD (Primary key)
COL2: DISTRICT_CD(primary Key)
COL3: BRANCH CD(primary Key)

Given these insurance tables, we could link Region, District and Branch Office to
Insurance Policy individually. We can go from Insurance Policy to Branch Office to
District to region etc. There are various possibilities to join these tables. However,
what decides the best join-path? Usually, the kind of questions and the complexity of
the SQL generated dictate the choice of a join-path. If the application mostly
concerns insurance policies and agents in branch offices, we might link
Insurance_Policy via Branch Office. If the application concerns policies and regions,
then we may link via regions. If all three are equally important, then we will link all
these to Insurance_Policy.

Copyright, all rights reserved

39

Figure 11 Example of join-path and inclusion dependencies

5.1.3 Inclusion dependencies

Primary-Key/Foreign-key relations should be scrutinized.

If the foreign-key column represents a different concept than the primary-key concept
(e.g. Tab 1. employee/Tab 2. manager), then an Ergo inclusion dependency is
usually specified, and the conceptual relationships of the super-type entity will be
inherited by the subtype entity.

If a foreign key column represents the same concept as the primary key (e.g.,
Tabl_dept/Tab1dept) then customization is straightforward, and usually a join-path is
set up between the tables to permit the specification of relationships between entities
representing concepts related to different tables.

5.1.4 Excluding columns

In table mode, those columns that are excluded, are those, which are not part of the
application, which are foreign keys columns representing the SAME concept as the
primary key. An example of this is an EMPLOYEE_DEPARTMENT and
DEPARTMENT_NO representing the same concept so EMPLOYEE_DEPARTMENT
can be excluded. However the EMPLOYEE.EMPMNO and
DEPARTMENT.MANAGER cannot be excluded because it is a subtype (subclass) of
employee representing a different concept.

To exclude a column, double-click on the column graph and select “Excluded” from
the “Properties of column” window.

Copyright, all rights reserved

40

Figure 12 Exclude column

Constituents of a multi-column primary key should not be excluded.

All the work in the pre-customization phase and in rework tables should be checked
before you go on. It is important that this phase is correct before you move on to edit
the model. See Case 1. Joins and Inclusion Dependencies, Fine Tuning the Model.

5.2 Create entities

Use the Lang (language) Mode to create and define entities in the conceptual model.
This is what you must do when creating/defining a new entity:

1. Create an entity by giving it a name
2. Classify the entity
3. Give it a language term if you want to use it in a query
4. Define the morphology of the term if you defined one.

These are the tasks you can use when you edit the conceptual model.

Copyright, all rights reserved

41

Figure 13 Process for entity creation

5.2.1 Creating a new entity

You create new entities when defining subclasses, instances, verbs and adjectives,
to enhance the conceptual model. To create a new entity, select:

Mode ➔ Lang
Action ➔ Add entity

Figure 14 Opening of the "Add entity" window

Once you have opened the Add entity window you can enter Name of entity, classify
it, add terms, syntax and SQL

Copyright, all rights reserved

42

Figure 15 Add entity window

Once an entity is defined and saved it will appear in the DB-mode graph. To edit the
entity you double-click on the icon.

Figure 16 Graph of an (undefined) entity

5.2.2 Naming an entity

The entity window contains an empty entry field, in which you enter a name for the
entity.

To change the name of an existing entity, select Name. The existing name appears
in the entry field. Each entity name must be unique. It can contain up to 25
characters.

1. Type the entity name in the entry field.
2. Press OK to enter the input and remove the window or press Class to add

classification

Copyright, all rights reserved

43

Figure 17 Specifying an entity name

5.2.3 Classifying an entity

Classify each entity in your conceptual model as a subclass or instance of at least
one other class. The define classifications window shows existing classifications
which are shown as a tree. The tree can be expanded and contracted.

5.2.4 Subclass and instance entities

1. Press the Class button to display the classification window:

Figure 18 Entity classification window

2. Select Subclass or Instance.

3. Press Add ➔ Thing to display the hierarchy of classes:

Copyright, all rights reserved

44

Figure 19 Class hierarchy

Some classes in the hierarchy already have subclasses. This is marked by a

symbol. To expand the hierarchy and view the subclasses, click on the symbol.

4. Select the class under which you want to add your entity.

5. Press Confirm classification changes to add the entity.

If the class you select is collapsed, a appears in front of it to show that you can
now expand that class. If you click on it, you see how your entity has been added to
the hierarchy:

Copyright, all rights reserved

45

Figure 20 Adding a subclass to the hierarchy

5.2.5 Consists of

Use the Consists of selection if you have to define a structured entity that consists of
a combination of two or more entities that have an SQL statement. As an illustration
you may have an entity car and an entity fast (connected to the terms fast, quick,
etc.) and define a structured entity fast car.

To classify a structured entity,
1. Press Class.
2. Add the entity as a subclass of one of the classes in the hierarchy.
3. Press OK in the Define classification window.
4. Select Consists of in the Define Entity window, and press Add.
5. Select the constituent entities in the same order as products users will use them
in their queries when they enter data values of the corresponding entities. Avoid
more than 3 or 4 constituents for each composite entities Otherwise questions
involving composite entities may cause memory problems. To remove a selected
entity, click on it once in the list in the upper part of the window. The highlighting then
disappears, and the entity is removed from the Ordered selection list.
6. Press OK.

Copyright, all rights reserved

46

5.2.6 Units of measure

When you classify an entity as a subclass of quantified_property (or a subclass of a
subclass of quantified_property), you can specify its unit of measure. The
customization tool contains units of measure for age, area, currency duration, length,
volume, and weight. When you specify a unit of measure, Ergo users can use that
unit of measure in their questions, for example:

How many dollars does a chisel cost?

Selecting an existing unit of measure
When you classify an entity as a subclass of quantified_property (or a subclass of a
subclass of quantified_property), you can specify its unit of measure. The
customization tool contains units of measure for age, area, currency duration, length,
volume, and weight. When you specify a unit of measure, Ergo users can use that
unit of measure in their questions, for example:
How many dollars does a chisel cost?

Selecting an existing unit of measure
To select an existing unit of measure:

1. Classify the entity under quantified_property (for example, as a subclass of price).
2. Press Confirm classification changes.
3. Press Unit of measure in the Class window.
4. Select the unit of measure that you want from the list (for example, dollar).
5. Press Confirm unit of measure changes.

Copyright, all rights reserved

47

Figure 21 Specifying units of measure

You can also specify a scale factor. For example, if your database contains weights
measured in pounds, but users instead want to talk about ounces in their queries,
select ounce as the unit of measure and specify 16 as the scale factor because 16
ounces = 1 pound.

Note that the scale factor is used only to convert the unit of measure in a question so
that it corresponds to the unit of measure used for data values in the column. The
answer to a question is not converted.

5.2.7 Creating terms

Create one or more terms for each entity that users want to refer to. The terms you
create can be either nouns, verbs, adjectives, or proper names. Each term that refers
to the same entity must have the same category; if you give an entity a term that is a
noun, the additional terms you create for that entity are automatically nouns. Do not
confuse terms with entity names. The name is used to distinguish the entity icon in
the diagram. Terms are used in questions. To create terms:

Copyright, all rights reserved

48

1. Press Term in the Add entity window.
2. Enter your term: for example, employee.
3. Select a category: Noun, Verb, Adjective, or Proper name.
4. Press Add.

If your term is a noun, verb or adjective, a window appears where you specify the
grammar of the term.

Figure 22 Creating a term

5.2.8 Specifying syntax

In the customization tool, syntax refers to how terms are used in a question. You
must specify syntax for each verb entities. Syntax is optional for noun and adjective
entities.

Syntax for verbs, nouns and adjectives
In the customization tool, syntax refers to how terms are used in a question. You
must specify syntax for each verb entities. Syntax is optional for noun and adjective
entities.

Syntax for verbs, nouns and adjectives
You can optionally specify syntax for adjectives and nouns.
1. Press Syntax in the Add entity window.
The Preposition complement window appears.
2. Select the prepositions that you want to use with your entity. Verb syntax is
discussed in detail in 7.10 Creating verbs.
3. Press Add

Copyright, all rights reserved

49

Figure 23 Adding syntax

4. If you select more than one preposition, the Syntax window appears with
proposed phrases using your term.
5. Select the phrase that suits your term.
6. Press OK.

5.2.9 Specifying an SQL statement

We use SQL to define the SELECT statement for an instance, adjective, or noun
entity that you create. If the column contains NULL values, you can change the
SELECT statement so that the NULL values are disregarded in the answer to a
query:

SELECT X1.COMM
FROM EPE.STAFF X1
WHERE X1.COMM IS NOT NULL

To specify an SQL SELECT statement:
1. Press SQL in the Add entity window.
2. Type the SELECT statement in the entry field, or copy text into the window from,
for example, an application program.
3. Press OK to enter the input and remove the window.

Copyright, all rights reserved

50

Figure 24 Specifying SQL

Note that if you modify the SQL statement for a column entity go to table mode, then
return to entity mode, the customization tool generates a new entity with the original
SQL statement. The column entity with a modified SQL statement remains
unaffected in the conceptual model.

See 8.3 Creating instance entities on SQL considerations for entities.

5.2.10 Creating verbs

Verbs are used to describe an action and link nouns together. In creating a verb, one
should perform the following:
1. Select Add entity from the Action bar
2. Give the entity a name
3. Classify the verb as event
4. Define the term and choose the verb grammar
5. Choose Verb Syntax
• Choose verb complements
• Choose prepositional complements
• Select the final syntax

To use the same verb with many different nouns, you can:

• Link the verb to a noun with many subclasses. (Because relationships are
inherited, the verb can also be used by any noun subclasses of that noun.)

• Create two or more verb entities with the same terms. You must do this if:
- The nouns are not all in the same table or tables that are joined together (directly or
indirectly).
- The verb has a different syntax or different meaning when used with different
nouns. For example, if programmers write programs and writers write manuals about
programs, define two verb entities with the term write.

Copyright, all rights reserved

51

5.2.11 Subclasses

Subclasses define data that are a subset of the data in the database.

• A subclass is one that is wholly contained within another class already defined.
Examples:
Clerk is defined as a subclass of staff, where job is clerk.
Tools are defined as a subclass of product, where the product group is tool.

• Subclasses use SQL to select a defined subset from the database.

Defining a subclass
1. Create and name a new entity. You could give the name an extension
of_subclass.
2. Classify the entity under the entity to which it belongs.
Examples:
Classify clerk_subclass under staff_table.
Classify tools_subclass under product_table.
3. In the Terms window, make the entity a noun and give it suitable terms and
grammar.
4. Select any prepositional syntax required.
5. Give the entity an SQL SELECT statement that will retrieve the required data. The
column selected is normally the identifier (primary key) of the concept.
Example: The SQL for clerk subclass is:
SELECT X1.ID FROM EPE.STAFF X1
WHERE X1.JOB = 'CLERK'

If the column is in another table, you need not change the default SQL for the column
entity. Appropriate SQL is derived from the inclusion dependency defined in Table
mode.

Figure 25 Subclass example

5.2.12 Creating adjectives

Adjectives in Ergo are used to select part of the data in a database. As with
subclasses, this selection is done with an SQL statement.

Specific adjectives
1. Create and name an entity. No extension is needed.
2. Make the entity a subclass of the noun it qualifies.

Copyright, all rights reserved

52

3. In the Terms window, make the entity an adjective and choose suitable adjective
terms and grammar.
4. Select any prepositional complements that may be required.
5. Enter the SQL that selects the required set of data.

Figure 26 Adjective

Subtype adjectives
If you create a compound term and define it as adjective + noun, Ergo creates a
subtype adjective. Example:

If you define electrical product as adjective + noun, but without creating the adjective
electrical, you can use the subtype adjective to ask questions such as List products
that are electrical.
If you define the compound term electrical product as a single noun, you can only ask
questions such as List electrical products.

For Each Subtype Adjective
1. Create a subclass entity
2. Classify the entity under the noun to be qualified
3. Give the entity a compound term (Adjective + noun)
4. Give the entity the SQL that selects the required subset.

5.2.13 Intersect

The classification window has an Intersect button that lets you select whether an
entity intersects with other entities at the same classification level or is disjoint from
them. Intersecting entities represent concepts that can be combined.
Example:
Senior is intersect with clerk_subclass because a person can be both a clerk and
senior.

Disjoint entities represent concepts that are mutually exclusive.

Copyright, all rights reserved

53

Example:
Clerk_subclass is disjoint with manager_subclass because a person cannot be both
a manager and a clerk.

Correct selection of intersect/disjoint improves performance.

Defining intersect entities
1. After classifying the entity, press Apply.
2. Press Intersect. A list of appropriate entities appears.
3. Select entities that are to be disjoint.
4. You only need to do this for one of the two entities involved.

Figure 27 The intersect window

5.2.14 Instances

Use instances to identify a specific row in a table. You may want to do this if an item
in the database has more than one term.

Examples:
Head Office is also known as HQ by the users.
A generator can also be called a dynamo.
The state of Texas is referred to as TX in the database.

You need to inflect the name of a database item.
Example:
You need to refer to cam and to cams, when CAM is the product name in the
database.

Copyright, all rights reserved

54

Figure 15 Instances

Lyckas inte förstå hur man gör detta på rätt sätt!! Se original-illustration

Creating instances
1. Create and name an entity. You could give the name an_inst extension.
2. Make it an instance of the concept to which it belongs.
Example:
Make cam_inst an instance of product_table.
3. Select suitable terms and grammar.
4. Select prepositional complements if required.
5. Enter SQL to select the specific row, using the primary key.
Example:
To select cams, use
SELECT X1.PRODNUM
FROM EPE.PRODUCTS X1
WHERE X1.PRODNUM = 150

5.3 The relation action

Use the Relation action to relate an additional entity you created with the Entity
action. You can create language and conceptual relations. You also can delete
relations. This is the way the Relation action works.

Copyright, all rights reserved

55

5.3.1 Defining relationships

A relationship is formed between two entities. Only one type of relationship can exist
between two entities, however, an entity can have as many relationships as
conceptually and grammatically needed. There are two types of relationships:

Conceptual relationships
1. Identifies
Used between an entity classified as an identifier and the entity it uniquely identifies.
Example:
What uniquely identifies staff? employee_id
2. Names
Used between an entity classified as name and the entity it names. The name should
be the column by which the row is generally described. Example:
What is the name of Staff? employee_name

Language relationships
There are additional relationships that denote possession, place, time and use of
prepositions.
1. Possessive relationships - denotes possession, for example, between the
manager and employee entities you define:
What does manager have? Employees

2. Place relationships - denotes location, for example, between the manager and
department entities you define:
Where is the manager? Department

3. Time relationships - denotes a duration of time, for example, between project and
end date entities you define:
Till when is the project? end date

4. Prepositional relationships - denotes usage of a preposition between two entities
(i.e. like a prepositional phrase). For example, between the verb entity works and the
entity clerk, a preposition as is defined.
Who works as a clerk

Relationships are represented by lines in the entity diagram. A solid line is drawn
between two entities if

• You define a relationship between the entities

• One entity is a subclass or instance of the other

• One entity consists of several entities, including the other.

5.3.2 Creating or changing a relationship

To define a new relationship or change a relationship that you have already defined:

1. Specify that you want to define a relationship, in either of these ways:
- Hold down the right mouse button and drag one entity icon onto the other.
- If a line (dotted or solid) already exists between the two entities, double click on the
line. To define a relationship between cluster icons, first expand the clusters, then
double click on the relationship line.

Copyright, all rights reserved

56

The Define relationships window appears.

Figure 28 Selecting a relationship

2. The possible relationships are listed. Select the relationships that you want.
The possible relationships depend upon the:
- Class of each entity
- Type of terms for each entity (noun, adjective, or verb)
- Syntax of each entity.

See Chapter 6 on Defining Relationships for more details

3. Press OK. A solid line is drawn between the two entities in the diagram.

Relationships need not be chosen from the Select relationships window when you
have defined a subclass, instance or structured entities using the “consists of”
function. If no relationships appear in the select relationships window, then you may
have forgotten to classify or give a term to the entity.

5.3.3 Removing a relationship

To remove a relationship, double click on the line representing the relationship and
deselect the relationships that are no longer valid in the Define relationships window.
Alternatively – press Delete and the relationship will be erased.

5.3.4 Correcting invalid relationships.

Relationships that you previously defined may become invalid if you change the:

• Class of either entity

• Type of terms (noun, adjective, or verb) for either entity

• Syntax of either entity.

This is how you check and correct an invalid relationship:

Copyright, all rights reserved

57

1. Double click on the relationship line to display the Define relationships window. A
selected but invalid relationships appears within brackets:

[What is the name of department? location]

2. Click once on the invalid relationships to deselect it. The highlighting disappears.

3. Select any of the possible relationships that you want.

4. Press OK.

Copyright, all rights reserved

58

6. CUSTOMIZATION PHASE 1 - PROCESSING ENTITIES
AND DEFINING RELATIONSHIPS

In following a breadth-first customization strategy, the first phase of the customization
process consists of processing entities in the Define entity dialog box and then
defining relationships between the entities. The CT automatically generates a data
model of entities. The customizer creates a conceptual model that will contain
necessary application information as the entities are processed and relationships
between them defined. When this phase is completed, the information may be saved.
Usually, this work will not have to be done again. If customization errors are made
later, the customizer can always come back to this point, or any later phase that is
done accurately and saved.

6.1 Processing entities

These are the main tasks for processing entities:
1. Naming the entities
2. Classifying the entities
3. Specifying terms for the entities
4. Specifying syntax for the terms linked to the entities
5. Specifying SQL for newly created entities

As these tasks are completed, the state of an entity changes. The aim of this process
is to enter correct conceptual and language information so that users will be able to
use the application containing this information to ask questions against a relational
database.

6.2 Naming the entities

The names of the entities are used to help identify the entities, to distinguish them
from other entities, and to be able to recognize what part of the database or what part
of language they are associated with.

Note: The names themselves do not affect the kind of questions that you can ask
with the query interface.

If there are two columns with the same name in different tables, then the
Customization Tool adds a digit at the end of their names to distinguish the names
from each other. Not only should names be distinguishable or identifiable within each
table but across tables. In the creation of a composite entity, it is important to know
where each entity comes from, and what table they belong to.

Note: Make sure that all names are recognizably different. This will make it easier to:

• Distinguish between each entity on the screen.

• Identify each entity during the creation of a composite entity, i.e., an entity
consisting of a set of other entities.

• Know what part of the database or scope of language the entity is associated
with.

Copyright, all rights reserved

59

Naming conventions can be useful to aid in the identification of these entities. This
would help the customizer identify the entities and make the entities recognizable
across each table.

It is useful if the entity name is similar to the primary term linked to the entity. The
name could also have different extensions for different entities, for example: CENT
for column entities, TENT for table entities, SENT for composite entity, VPENT for
verbs in the passive voice, VAENT for verbs in the active voice and so forth. You can
devise your own naming conventions accordingly.

6.3 Classifying the entities

When you classify an entity, you associate that entity with a concept found in the
classification hierarchy. Since you will next link a language term to the entity, you
must make sure that the classification you choose for an entity fits the language
terms you want to use.

Note: You can also add your own classifications for selected classes not found in the
hierarchy by creating an entity and classifying it where you expect it to belong. Such
an entity requires a DB image, i.e., SQL must be specified for it. The main objective
for creating such an entity would be to add conceptual clarity to the model.

The figure below shows the classification hierarchy at its highest level.

Figure 29 Classification hierarchy

Copyright, all rights reserved

60

Remember these things when you classify entities:

1. Classifications pass on syntactic properties to entities. A category in the
classification hierarchy enables certain kinds of questions to be asked. Classifying an
entity as a place will enable you to use 'Where' in your questions.

2. The classification of the entities will enable you to define different kinds of
relationships between entities depending on how you have classified the entities.
Classifications also effect relationship options. If you classify a 'department' entity as
a place, then you will get the option to select relationships like 'Where is the
employee? department' when you select relationships between the 'employee' and
the 'department' entities. If you classify 'manager' as a person, then you will get the
option to select relationships like 'Who is the manager of the department? ‘manager'
when you select relationships between the 'manager' and 'department' entities.

3. Do not classify entities where it should not be classified. For example, you should
not classify salary as a thing, if you want to refer to salaries by asking 'how much...' in
a query. Classifying salary as quantity is correct because salary is usually used in a
context, which denotes quantity, e.g. 'How much is Joe's salary?'

Most of the classifications are obvious -- a person is a person, and a date is a date.
But what if the entity does fit in any obvious classification? Then you can usually
classify the entity as a material thing.

There are 37 classes already defined in the Customization Tool:

Thing

 Address

Event

Identifier

Institution

Material_thing

Name

Number

 Quantity

Person

Place

Property

Quantified_property

 Age

Area

Depth

Duration

Height

Length

Price

Size

Value

Copyright, all rights reserved

61

Volume

Weight

Width

Time

 Date

Period

Timestamp

Unit_of_measure

 Currency

Unit_of_measure_age

Unit_of_measure_area

Unit_of_measure_duration

Unit_of_measure_length

Unit_of_measure_volume

Unit_of_measure_weight

Table 2 Define classes

4. Entities can also have more than one classification. If for instance we have a
'university' entity, then that entity can be classified as both an institution and a place.
This is not encouraged, however, since it will affect the performance of the natural
language engine. There are some exceptions as follows:

Example 1 - identifiers and names
Some entities classified as names or identifiers can be can be classified as
something else. Some entities can be classified as both identifier and name. For
example, 'country' in a country table can be both an identifier and a name because
there is only one and only one country that exists in this world having one and only
one name. Note that it can also be classified as a place. Again this is dependent on
the context on how it is used in a question.

Example 2 - quantities and numbers
Some entities can be classified both as a quantity or quantified property and number.
Given an entity commission. If we were to ask
List commissions > 500
then commission would need to be classified as a number. If commission were to be
used in this context
List the top ten salesmen,
then commissions would have to be classified as a quantity and a
measured_by_relationship should be put in place between commission and perhaps
the entity salesmen.

In general, multiple classifications should be avoided.

Performance of the Ergo Engine is affected by the number of relationships made
possible by the classifications that have been specified. Multiple relationships based
on multiple classifications generate multiple paraphrases. You could classify on the
basis of the relationships you are sure you will need to ask the questions you want.
Avoid multiple classifications that can generate redundant syntax. For example, if

Copyright, all rights reserved

62

'department' is classified as a place, it does not need to be classified as an institution,
which gives you the same language-coverage possibilities.

6.3.1 Classifying identifiers and names

At this point keep in mind these important classes:

IDENTIFIER
This classification is used for entities that represent the primary-key data values of a
table. Primary-key data values represent unique instantiations of a concept. For
instance, the 'employee code' column in an employee table will contain a set of data
values representing unique instantiations of individual employees, where 'employee
code' is the primary key of the table.

Subclass identifier note: Identifiers that are subclasses of other identifiers can be
classified as a straightforward identifier. Unless a term is required in the application
for the identifier of a subclass, then it can be classified at the level of its super-class
id. There are performance implications here because there is nothing to be gained in
classifying it as a subclass of its super-class id.

Non-3NF note: If the table is not in third normal form, a column might be identifying
another column in the same table. If this table were normalized, these columns would
be in a separate table by themselves. In order to deal with this problem, you would
usually create new concept entities, that would be identified by the entity this column.
(See Chapter 7, Creating New Entities.)

Multiple-column primary key note: If the table represents a concept and has a
multiple-column primary key, then you will create a composite identifier, which will be
classified as an identifier. The components of the composite identifier do not have to
be classified as identifiers. It is sufficient to classify them as things.

NAME
This classification is used to represent the name of instantiations of the concept
represented by the table. For example, in an employee table the 'employee name'
column contains the name of instances of employees, since the table represents the
concept, 'employee', and 'employee name' is the name of instantiations of employees
in the table.

Subclass name note: Names that are subclasses of other identifiers can be
classified as a straightforward name. Unless a term is required in the application for
the identifier of a subclass, then it can be classified at the level of its super-class
name. There are performance implications here because there is nothing to be
gained in classifying it as a subclass of its super-class name. This might occur if the
DB is not in 3NF.

Non-3NF note: If the table is not in third normal form, in addition to redundant
column information leading to subsets of data values and subclasses, a column
might be naming another column in the same table. If this table is normalized, these
columns would be in a separate table by themselves. In order to deal with this

Copyright, all rights reserved

63

problem, you would create new concept entities, which should be named by the
entity corresponding to this column. (See Chapter 7, Creating New Entities.)

Multiple-column primary key note: If the table represents a concept and has a
multiple-column name or description, then you will create a composite name, which
will be classified as a name. The components of the composite name do not have to
be classified as a name. It is sufficient to classify them as things.

6.3.2 Specifying terms for entities

You can have as many terms for an entity that you want and is practically useful.
Memory is the main limitation. But it is unusual to have on the average more than 10
terms and synonyms linked to a given entity.
Here is a list of things to remember about terms:

1. The terms that you link to the entities are the words that the user will use to
access information in the database. Because the entities are classified, they
represent concepts. Except for verbs, all entities - either directly, or indirectly through
an identifier - will have a DB image. It is the language-entity-database link that that
enables your queries to be processed.

2. A subclass will inherit the default (primary term) of its super-class. Therefore, a
subclass should not have any term from the super-class’ term list in its term list. For
example, if 'branch office employee' is a subclass of 'employee', then 'employee' and
all its synonyms, e.g. 'staff', will be inherited by the subclass 'branch office employee'.

An entity that is the subclass of another entity does not need nor should have as a
synonym any of the terms linked to the super-class entity.

3. You can specify more than one term for an entity, and the user will be able to use
all terms for an entity, but it is only the first one that the Query Interface will use to
generate its paraphrase (interpretation) of the question. So you should make sure
that the first term of all entities is different. For example, if you have two entities with
the first term 'employee', then the query 'who are the employees' will give you two
identical paraphrases: 'list the employees'. However if you make 'employee' the
second or third term of the entities and make the first term something else like
'headquarter employee' and 'branch office employee' then you will get the two
paraphrases: 'list the headquarter employees' and 'list the branch office employees.'
That is, the most descriptive term should be the first term. If a shorter form that has
two different interpretations is used, then the shorter form should not be the first term
for both entities.

The first term is the default term or primary term, which is used in paraphrases by the
query interface. This term should be recognizably different from all other terms.

Copyright, all rights reserved

64

Figure 30 Example of subtypes and super-types sharing terms

6.3.3 Types of terms

The two most commonly used forms for terms are:
1. SINGLE NOUN. Use this form if you want treat the compound term as a single
noun and you do not need to use the individual terms in any other combinations.
Example:
If the term is 'california location', you will always use the entire phrase together in
each query you write: e.g. 'List the california locations'.

2. ADJ + NOUN. This form is used if you also want to use the modifying adjective as
a predicative adjective in your queries. This is also used to define term for an
adjective entity.

Example:
We can say 'List the plants that are profitable', 'List the profitable plants'. This
adjective property is inheritive. So, for example, if we have a 'western plant' subclass,
then we can ask questions like: 'List the western plants that are profitable'.

The following are other forms of compound terms that are rarely used:

1. NOUN + NOUN. Use this form if your compound term consists of two nouns, and
you want to use the plural form of one or both of them either separately or in other
combinations.

Example:
'Woman doctor' is a compound term whose components can both be inflected, e.g.,
women doctors.

2. ADJ + NAME. Use this forth if your compound term consists of an adjective and a
proper name, and you want use one or both of them either separately or in
combinations.

Copyright, all rights reserved

65

Example:
North America is a compound term whose parts can be used separately or in other
combinations, such as South America or North Sea

3. NAME + NOUN. Use this form if your compound term consists of a proper name
and a noun, and you want to use one or both of them either separately or in other
combinations.

Example:
Texas customer is a compound term whose parts can be used separately or in other
combinations such as Texas company or California customer.

4. NOUN + NAME. Use this form if the compound term consists of a proper name
and a noun and you want to use one or both of them either separately or in
combinations.

Example:
Accountant Smith is a compound term where parts can be used separately or in
other combinations such as Accountant Jones or Captain Smith.

5. ADJ+ NOUN + NOUN. Use this form if the compound term consists of an adjective
and two nouns, and you want to use at least one of the terms either separately or in
combinations.

Example:
Local sports club is a compound term whose parts can be used separately or in other
combinations, such as new tennis club or local tax authority.

Note: There is a way to define terms needing the form ADJ(ADV) + ADJ + NOUN.
For instance, if you wanted to say both 'show senior clerical employees' and 'show
employees that are senior clerical' you need to define 'senior clerical' as an adjective.
This is accomplished by writing 'senior clerical employee' as the term and define it as
ADJ + NOUN. Then change the forms of 'senior_clerical' in the Adjective grammar
window. You change BIG 'senior clerical' to 'senior clerical'. You then can delete all
other inflections of the adjectives, unless they are meaningful for the questions you
want to ask.

6.3.4 Specifying syntax for entities

Normally we save specifying syntax as our last task. This is because our
classification specification will provide the initial necessary syntax. However, syntax
must be specified for verbs.

Note: Remember to specify syntax for verbs. You must always specify to verb
complement to be able to set up verb relationships to ask questions.

Copyright, all rights reserved

66

6.3.5 Specifying SQL for entities

For every new concept entity created must have a DB image. This is accomplished
either by writing SQL directly to the entity representing the concept or by linking the
new concept entity to an identifying entity that has an existing DB image.

6.4 Defining entity/entity relationships

You can define these kinds of entity/entity relationships:
1. Column/table entity relationships
2. Table/table entity relationships
3. Other Relationships
a. Column entity/column entity relationship
• where the relationship is defined between entities linked to the same table
• where the relationship is defined between entities linked to different tables
b. Newly created entities/any other entity

You can also define these entity/entity relationships based on conceptual criteria.
The conceptual relationships you can define include:
1. the identify relationship
2. the name relationship
3. the possess relationship
4. the locative (place) relationship
5. the temporal (time) relationship
6. the count_by relationship
7. the measure_by relationship.

There are also language relationships based on the parts of speech of the language
terms linked to the entities. These include nouns, verbs, and adjectives.

6.5 Defining column/table relationships

When working with column/table relationships, you must take into account whether
the table is in 3NF or not.

1. When a table is in 3NF, the column entities usually represent an attribute of the
main concept represented by the table entity. Normally, all column entities will have
relationships between them and their table entities defined (by activating the dashed
lines between the column entities and the table entities). A possessive relationship is
almost always defined or inherited. For example, if you defined a possessive
relationship between the table entity, 'employee', and the column entity, 'salary', you
will be able to ask questions like 'What are the salaries of the employees?’

Note: Possess relationships also enable refer back pronouns, e.g., 'list the
employees and their salaries'.

Other kinds of relationships will depend on the classification of the entities, for
example, as a place.

Remember: If the database is in 3NF, every column is usually an attribute or property

Copyright, all rights reserved

67

possessed by the concept represented by the table.

In order to define relationships between entities you need to click on the line between
them. A list of possible relationships will show up on the screen, and you can select
the ones that you feel are most appropriate. The list of relationships that show up will
depend on how the entities were classified, so if a certain relationship that you want
does not show up you might want to reclassify the entities. The list of relationships
also depends on whether terms have been defined for the entities, particularly for
verb entities.

These are some of the relationships that might show up:
What does the Department have? Employee
What does the Employee have? Department

These are "possess" relationships and will enable you ask questions like:
What is the department of John?

if John is an employee, and:
Who are the employees of the marketing department?

For locative expressions, you select:
Where are the employee? Department

This will enable you to get answers to questions like:
From what department is John?

and:
Who is from the marketing department?

The relationship:
From where do the employee come? Department

will let you answer questions like:
From what department does John come?

and:
Who comes from the marketing department?

Note: Some columns might be components of a composite entity possessed by the
concept represented by the table. An example of this would be an address entity
consisting of a street and a city column entity.

2. If the database is not in 3NF, then some column entities may not have a
relationship to the table entity it is linked to. When this is the case, the customizer
must understand how such entities are related to other entities.

In this case, some column entities may not be attributes of the table entity, and a
relation between the column and the table entity may not have to be directly defined.
The customizer should remember these things when working with non-3NF
databases:

Copyright, all rights reserved

68

• Some sets of columns might represent embedded concepts where some of the
columns are identifiers and others are names. See Case 6.
• Some columns may represent multiple (ambiguous) meanings determined by a flag
in another column. See Case 13.
• An entire table may actually be an extension of another table linked by a join-path.
All columns in the extension table could then be attributes of the other table. Usually
in such cases, the primary key of one table is a foreign key of the primary key of
another table. When this happens, table entities with the 'foreign key' primary key can
be deleted or processed as something other than nouns, e.g., processed as verbs.
See Case 9.

6.6 Defining identify relationships

An identifier entity is classified as an IDENTIFIER, and you select the relationship
'What uniquely identifies < table entity > ? < column entity >

Note: All table entities representing main concepts have to have an identifier. Note
also that not all tables represent main concepts.

The identifier has to be the primary key for the table in order to be the identifier when
the database is in 3NF.

Note: If the table has a primary key with more than one column, none of the
individual entities uniquely identifies the table. We have to create an entity that
consists of all of the primary key columns, and let that entity be the identifier to the
table, i.e. we must create a composite entity, classified as an identifier that consists
of the primary key columns.

6.7 Defining name relationships

When a database is in third normal form, there is usually a column that 'names' or
describes instances of the concept represented by the table. The name of the
instances of the concept represented by the table 'employee' is the column
'employee name', or 'department name' for the 'department' table. These columns
have to be classified as names, and you need to high-light the relationship 'What is
the name of < table entity > ? < column entity > .'

Note: As with the identifier, the name of the instances of the concept represented by
the table can consist of more than one entity. For instance the 'city', 'state' and
'country' columns for a location table may together represent the location name.
Here, we must create a composite entity, consisting of the describing/naming
column. This entity is classified as a name.

6.8 Defining possessive relationships

If a column entity is an attribute of the concept represented by the table entity, a
possessive relationship must be defined.

Copyright, all rights reserved

69

Note: A table entity representing a main concept can possess a column entity
associated with another table. This can happen, for example, with non-3NF
databases, or when the primary key of one table is the foreign key of another table.
For queries to work, however, a join-path must link the two tables.

6.9 Defining other conceptual relationships

In addition to the identify, name, and possessive conceptual relationships, you can
also define these:
1. the locative (place) relationship
2. the temporal (time) relationship
3. the count by relationship
4. the measure by relationship.

You must classify entities correctly to define these relationships. We examine these
relationships more thoroughly in Chapters 8 and 9.

6.10 Defining table/table relationships

Just like the relationships between the columns and the tables, there may be
relationships between the tables themselves. The same choices apply to these
relationships as the column/table relationships.

Note: Table entities have no DB image, i.e. there is no SQL automatically specified
for corresponding entities. The DB image is specified when an identify relationship
has been defined. Of course, the customizer might later want to add SQL to table
entities, but this rarely happens; and it would not happen if the table entity has an
identifier specified.

6.11 Defining other entity/entity relationships

Other entity/entity relationships include:

• Column entity/column entity relationship where the relationship is defined
between entities linked to the same table

• Column entity/column entity relationship where the relationship is defined
between entities linked to different tables

• Newly created entities/any other entity

It may happen, especially if the database in not in 3NF, that relationships are
required between entities linked to the same table or to different tables. In the latter
case, be sure a correct join-path exists between the tables. And when you create
new entities, be sure you clear about the relationships you want to define with them.

6.12 Non-3NF considerations

If your database is not in 3NF, then you should
1. Identify the main concepts and their identifiers.
2. Determine the attributes possessed by the main concepts, identify which entities
in the model they correspond to, and define the relationship.

Copyright, all rights reserved

70

3. Determine what other relationships the main concepts have to other entities and
define them.
4. Make sure join-paths are correctly set up to handle the relationships you want.

6.13 Multi-column primary key considerations

If you have multi-column primary keys, you should
1. Identify multi-column join-paths to other tables.
2. Create a composite identifier and select the components in the order you want.
3. Link the identifier to the correct concept it identifies.

Copyright, all rights reserved

71

7. CUSTOMIZATION PHASE 2 - CREATING NEW ENTITIES
If you are following a breadth-first strategy, you have now processed all the entities of
the initial data model and defined the main relationships you want. Your conceptual
model is well on the way. You may now save the model and make a backup for
future reference. The easiest work has been done. Now you will begin creating new
entities. There are three main reasons for creating new entities:
1. You want to expand your language coverage.
2. You want to expand your access to the information in the database.
3. You want to add entities to optimize Ergo performance.

Note: We could add a fourth reason. If your database is not in 3NF, creating new
entities also enable you to add conceptual clarity to your model. Maintaining
conceptual clarity is equally important when customizing.

There are a variety of entities you can create, when adding entities to the model.
These include:
1. Composite entities
2. Dummy table entities
3. Verb entities
4. Subclass entities
5. Instance entities
6. Adjective entities
7. Special information entities

In this chapter we will discuss the first three in this list. The others will be discussed
in the next chapter.

7.1 Composite entities

Some concepts require links to several entities in the model. In the documentation
entities corresponding to these concepts are called composite entities. A composite
entity consists of more than one entity. The language term linked to a composite
entity refers to information in more than one column in the database. You can have
composite entities any class of concept, consistent with the information in the
database. These include:

• Composite identifiers

• Composite names

• Composite attributes

• Composite embedded concepts

• Composite reports

• Composite sorters

A composite entity may consist of

• Entities that exist in the initial data model

• Entities that have been created.

For example, you may need an address composite entity, consisting of the column
entities 'street', 'city', and 'state'. The components of address are found in the initial
data model

Copyright, all rights reserved

72

Or you may want an income report composite entity, consisting of the created
entities, 'income', with a DB image including SELECT (x1.salary + x1.commission),
and 'income_after_tax', with a DB image including SELECT ((x1.salary +
x1.commission) – x1.tax), both of which give information about the gross and net
income of salesmen. The components of income report must be created.

Note: A composite entity consisting of entities corresponding to columns or
information from different tables requires that a join-path be specified, directly or
indirectly linking the tables.

You create a composite entity by first classifying the entity and then choosing the
Consists of option in the classification dialog box. The Customization Tool will then
give you a list of all the entities in the conceptual model that are selectable as a
composite entity components, so you can choose the entities that are appropriate. A
composite entity is a concept whose entity components can only be selected from the
Consists of window.

Note: You create composite entities during the classification phase of processing an
entity. You can have up to 255 components in a composite entity.

7.2 Creating composite entities for identifiers

You need a composite identifier if

• the database contains a table having a multi-column primary key

• the conceptual model requires a subclass of an entity that has a composite
identifier.

If several entities refer to the primary key columns of a table, you only need to

• create an entity

• classify it as an identifier

• select its component entities

• link it to the concept it identifies

to create and process a composite identifier. Generally, they do not need terms.

Note: If you create a subclass composite entity, the components of the subclass must
be in the same order as they are in the super-class.

An identifier of a subclass whose super-class has a composite identifier must also be
a composite identifier. Then the identifier of the subclass must consist of all the
entities that make up the identifier of the super-class, except one. The last
component of the identifier of the subclass - and it does not matter which of the
components you select - must be a created entity with a DB image identifying the
appropriate subset of the data values referred to by the subclass it identifies. This DB
image will SELECT the data values referred to by the component entity and include a
qualifying WHERE clause.

For example, if 'order' has a composite identifier, 'order_id', consisting of 'cust_no'

Copyright, all rights reserved

73

and 'order_no', where 'order_no' might be non-unique because it is a date, a
subclass, 'california_order', would have a 'calif_order_id' consisting of either
'calif_cust_no' and 'order_no', where 'calif_cust_no' might have a DB image such as:

SELECT x1.cust_no
FROM tab x1
WHERE x1.ship_site='CA'

or it would have a 'calif_order_id' consisting of either 'cust_no' and 'calif_order_no'
with a DB image like this:

SELECT x1.order_no
FROM tab x1
WHERE x1.ship_site='CA'

It does not matter which of these alternative ways of creating a composite identifier
you choose. If there are n entities comprising a composite identifier of a super-class,
there are at least n ways of creating a composite identifier of a subclass. You can
select whichever one you want.

After defining the identify relationship you can ask:
list the California orders

7.3 Creating composite entities for names

You need a composite name if

• the database contains a table having a more than one column naming or
describing instantiations of the concept

• the conceptual model has an entity, whose name or description refers to more
than one column of information in the database.

If several entities refer to the naming columns of a table, you only need to

• create an entity

• classify it as an name

• select its component entities, and

• link it to the concept it names

to create and process a composite name. Generally, the components will have terms,
such as 'first name', 'middle initial', and 'last name', for example, where these terms
refer to different columns in a table.

A name of a subclass whose super-class has a composite name will also be a
composite name. But you do not have to create the composite name. You get it for
free. As long as the subclass has a proper identifier, the NLE will be able to find the
correct name as it parses the query and generates SQL.

Copyright, all rights reserved

74

7.4 Creating composite entities for attributes

Several component entities may together represent an attribute of a main concept.
For example, an employee table may have the address columns STREET, CITY, and
STATE. Entities representing these columns may together constitute an
'employee_address' attribute possessed by employees.

If you want to ask
list the employees and their addresses

you would have to

• create a composite entity for 'employee_address'

• specify the term, 'address'

• define a possess relationship between 'employee' and 'employee_address'.

Similarly, employees might have a training history consisting of internal courses and
external courses they have attended. You would create a composite entity, 'training
history' consisting of 'internal course' and 'external course'. Then you will get the
information you expect when you ask
list smith's training history

7.5 Creating composite entities representing embedded concepts

In principle, any entity can be combined with any other set of entities to form a new
main concept. Non-3NF databases usually contain embedded concepts, and often
these concepts have components. For example, a 'location' concept embedded in a
department table may consist of 'district' and 'region' entities. You might have an
order-monitoring application where the concept, 'account' consists of 'account_no',
‘subaccount_no', and 'business_unit' entities corresponding to columns in an order
table.

Note: All multi-column concepts should be identified in the pre-customization phase
of the Ergo application development process. This will make it easier to customize
when you reach the second phase of customization.

7.6 Creating composite report entities

You can create other composite entities if you want to create concepts consisting of
several component entities, i.e. if you want a single term to refer to a group of
entities, or if you wish to tailor a report consisting of several entities. Because you
can select as the report entity's components entities corresponding to columns from
different tables, report entities have an effect similar to creating a VIEW. The
difference is that SQL syntax is more limited for CT-created DB images.

For example, employees might have incomes consisting of 'salary' and 'commission'.
You very likely will want an 'income' report. This could be a composite entity
consisting of the 'salary', 'commission' and also a new entity with (salary +
commission) in the SELECT part of the DB image. You report may or may not
contain numerical components.

Copyright, all rights reserved

75

< The figure will be added in a later release >

Figure 31 An example of a report composite entry

The example of a report composite entity is shown above. It shows order report
composed of customer, product id, product name, and sales quantity. It is used to
show more information about the order entity than would be normally given by an
identifier and a name.

A composite entity can be a means of generating a report that requests information
from more than one column in an SQL statement. When creating reports be sure to
keep make clear conceptual distinctions between them, if there is more than one of
them.

7.7 Creating composite report entities with numerical components

Composite Entities can consist of created entities having arithmetic operations in the
SELECT part of the DB image. These entities contain numerical information,
subclasses, or instances. Subtypes and Instances are discussed in Chapter 8.

Note: Entities that contain SQL statements with Column Functions COUNT, SUM,
AVG, MIN, and MAX cannot be a component of a composite entity for Ergo Release
1.

For example, if we create a Real_Order_Value concept, which consists of several
entities, one of which contains an SQL expression to calculate the wholesale value
SELECT (x1.quantity x x2.product price)
FROM sales x1, products x2

and a second entity that contains the calculated retail value
SELECT 1.10*(x1.quantity x x2.product price)
FROM sales x1, products x2

then the question 'What is the real order value' should give us both the wholesale
value and the retail price.

Note: You cannot create a composite entity out of a composite entity.

The components of composite entities must all have SQL. The entities in the model
that contains SQL will be displayed in the Consists of window. Note that not all of
these entities can be selected for the composite entity. All entities that are part of a
composite entity must be associated with tables (as columns or subclass) that are
linked by join-paths.

7.8 Creating composite sorters

If a report is needed consisting of the columns or entities that need to be ordered
(order by colx, coly, colz) in a query, then we can take advantage of the composite
entity approach and create a composite entity that is composed of these entity

Copyright, all rights reserved

76

columns in the manner that they will be ordered by. We can informally call such an
entity a sorter. For example, if we create an entity, 'account_order,’ composed of
entities selected from the Consists of window in an order such as:

COL1, COL2, C0L3, JOB, SYSTEM...

then create a possessive relationship between account_order and another entity,
e.g., 'client', consisting of information requiring the ordering of the entities in the
sorter, we can now ask the question

'List the clients by account order'

and we will get the information ordered by the entities that 'account_order' consists
of. With this solution an entity would have to be created for every kind of order-by
question that the user would like to ask. If the user would normally order by the same
permutation of entities, then this is a good solution. See Case 7.

7.9 Creating dummy table entities

Strictly speaking, any entity added to the conceptual model represents a new
concept in one way or another. When we speak of a new dummy table entity here,
we are referring to a single entity

• that either is directly linked to a DB image or is indirectly linked to a DB image by
having an identifier with a DN image, and

• that has been added for the specific purposes of either enhancing language
coverage or conceptual clarity, rather than for the specific purpose of accessing a
subset of information in the database

• that would correspond to a table in the database if it were normalized.

Dummy table entities are often created if the database is not in third normal form. If
you have a 'location' table and you have an 'employee name' column and a
'employee code' column that identifies the employee name. If both of these columns
are in same table and they are not identifying and naming a 'location' itself, then the
database is not in third normal form. The concept, 'employee', is embedded in the
concept, 'location'. This means that we have to create a dummy table entity called
'employee'. The dummy 'employee' entity will have the 'employee name' entity as its
name, and the 'employee code' entity as its identifier. These dummy table entities
often create the appearance that the table is in third normal form, since tables using
these types of entities are normally non-3NF tables.

The name and the identifier of a dummy table entity (even though they correspond to
real columns in the database) will usually not have relationships specified between
them and the main table entity. Only the dummy table entity itself should have
relationships to the table entity (if there should be any relationships at all). For
example, if we have a non-3NF Agent table whose column entities contain
embedded concepts referring to clients and agents, then we have to create a new
concept called client, and establish relationships between the client id and client
name to this new concept. We would not then define any relationships between these

Copyright, all rights reserved

77

entities and the 'agent' entity. Only the client entity will have a defined relationship
such as a 'possess' or 'have' relationship if necessary.

Note: If the table were in third normal form, the dummy table entity would be a table
by itself. Dummy table entities do not need a DB image, if there is an identifying
column entity in the initial data model. If there is not, then an identifier must be
created, or a DB image can be written directly to the entity.

Two kinds of dummy table entities
There are basically two types of dummy table entities:

• Self-identifying dummy table entity - the identifier-of the concept is not reflected
directly in the data model reflecting the structure of the database, i.e., the identifier is
not physically a column in the table. In this case, you may write SQL directly to the
concept.

< The figure will be added in a later release >

Figure 32 A simple self-identifying concept

• Non-Self identifying dummy table entity - the identifier exists as a physical column
in the table, and it contains the SQL identifying the concept. An identifier may also be
created with SQL written to the identifier, if the identifier did not exist as a physical
data value in the table. However, this is not necessary. When this is done, it is
usually to preserve clarity in the model.

Note: Refer to section on Creation of identifiers to subclass on corollary rules of
thumb.

< The figure will be added in a later release >

Figure 33 A non-self-identifying concept

Dummy table entities and composite entities
A dummy table entity may represent a new concept. As a new concept, it may be a
composite entity; be identified or named, or both, by a composite entity; or lack an
identifier or name, or both.

Both Numeric and Non-numerical data of data are supported for each category and a
combination of several things are possible:

• Those that have an id (Single or Multiple column entities)

• Those that have an id, name (Single or Multiple column entities)

• Those that have only a name (Single or Multiple column entities)

• Those that have no id and no name (Single or multiple Column entities)

There are not clear rules for customizing, if the question is not resolved by the
structure of the database or the language you want to use in your queries. There is
also a trade-off between performance and conceptual clarity. You should create the

Copyright, all rights reserved

78

constructs that enable you to get your queries processed, and once processed,
processed most efficiently.

Note: Dummy table entities (having no direct SQL) may have multiple-entity
identifiers and/or names consisting of several components with semantically complex
terms. All entities representing concepts need an identifier, or some SQL, to define
the entity in order for it to be used in a query. Queries using terms linked to
composite dummy table entities will be more efficient if identifying and naming
columns are included among the list of components of the entity, rather than directly
specified as identifier and name.

7.10 Creating verbs

A verb is a word or a group of words, which usually express action or a state of
being. In Ergo, verbs concepts enable you to ask questions like

'Where does John work' or 'What did the customers buy

To create a verb, you must

• Create an entity

• Give it an entity name

• Classify it as EVENT

• Give it a term, selecting the verb option

• Select the Syntax option and specify it verb complement

• Continue with the Syntax option and specify it prepositional complement

Note: All verbs are classified as Event.

After creating the verb entity, the next step is to define its relationship to other entities
in the model.

7.10.1 Defining the verb complement

The verb complement window allows you to select the proper syntax to be used
corresponding to the verb. The verb complement is typically an object that follows the
verb. Verbs that have direct objects are classified as transitive verbs, and those
verbs that do not require a direct object are called intransitive verbs. For example:

Intransitive with no object
Who assigns
Managers assign from departments.

Transitive with a direct object
Who assigns what
Managers assign projects

Transitive with indirect object
Who assigns what to whom
Managers assign projects to employees.

Copyright, all rights reserved

79

Transitive with 2 direct objects
Who named whom whom/what what
Who named the modules MOD1?

Figure 34 Subject predicate direct object indirect object

It is very important that the right verb syntax is selected, i.e. the right verb syntax
terms of how you will be using the verb. Select the Intransitive form of the verb when
the context of the sentence calls for that syntax. However, you are limiting the usage
of the verb to that particular syntax ONLY.

Note: To use the verb 'assign' in all three of these grammatical contexts require that
one single 'assign' verb be created.

• Selecting the third complement option will guarantee that the other two contexts
will be covered provided that the first option ‘Who assigns' does not require a
prepositional complement. This is discussed in the next section.

• Selecting the first means you want to limit the use of the verb.

7.10.2 Specifying prepositional complements

The next step is to select prepositions for the verb. If you feel that you need any
special prepositions with the verb in order for the users to be able to use the verb
right you can select those prepositions from a long list. For instance, if you have
created the verb talk, and you wanted the user to ask questions like 'What did the
customers talk about' then you need to specify that 'about' is a special preposition for
the verb 'talk'. Verb should be binary (always joining two entities). You should have
two different 'eat' verbs if you want to have both
Customers eat in restaurants.
Employees eat food.

Copyright, all rights reserved

80

That is, make two verbs if the verbs are used in different grammatical contexts, as in
this case an intransitive (without an object) and a transitive (with an object) context.
Notice that the verb EAT is followed by the preposition IN. There are variations to
how prepositions are defined with verbs.

In the previous example 'customers EAT IN restaurants' IN is automatically defined
for a place relationship. You do not need to define them at all since these
prepositions come for free or automatically depending on the relationships of the
entities. The next section on verb relationships talks more about this.

Prepositions can also be selected from the prepositional complement box. This
results in the creation of prepositional relationships if one defines this verb with the
preposition taken from the prepositional complement box, (VERB + PREP) then there
is a lot more grammatical flexibility in this. One can ask questions such as:
'What projects does John work with Smith on at LDG '
‘On which projects did John work?'

Let s define the verb work as shown in the following diagram.

Figure 35 Verb “work” with prepositional complements

Here we can see from the diagram that three prepositional relationships have been
defined:

• Staff work as clerks
• Staff works as sales-representatives

• Staff works for a manager

The verb syntax decides which relations will be available

Copyright, all rights reserved

81

Figure 36 Defining syntax for a term

Depending on the relationships of the entity, a preposition may be needed to be
defined Note that any relationships that include a preposition is inherited by a
subclass only if the subclass has the same preposition defined. However since
subtypes inherit the properties of their super-types, a verb should be created for the
super-type, since this will be inherited by the subtypes.

The third way that prepositions can be defined is to define them within the term itself
of the verb, in other words it accompanies the terns of the verb. For example we can
define the verb 'work on' as on whole term for the verb as in 'John works on the
project.' When we define the preposition that accompanies the term, then we are
limited in using the verb in sentences where the preposition is always adjacent to the
verb. For example, if we defined the verb 'work on' then we can only ask questions
such as
'What does John work on?'
'Who works on project X?'

See Case 10

7.10.3 Defining verb relationships

After both verb and prepositional complements have been established one can
define relationships between the verbs and their respective entities. These are either
prepositional, locative, or time relationships.

Verb complement relationships:
Who interviews?
What is bought?
To whom is someone assigned?

Prepositional relationships:

Copyright, all rights reserved

82

What does employee work as? Clerk

Locative relationship:
Where does employee work in? department

Time relationship:
Which employees worked yesterday? employees

Depending on the relationships of each entity, prepositions can be generated
automatically for use. In the above example, if we have a locative relationship that
generated the preposition 'IN' automatically between work and department, if we
need a preposition 'IN' between work and an entity classified as a material thing or
noun, we need to define a preposition from the Syntax box because a noun or thing
does not generate the preposition IN. For example: Customer works in financial
industry.

Note that when defining verbs one should NOT define both a locative relation and a
prepositional relationship. Use the prepositional relationship only when the
preposition is not covered by one of the other relationships, and if only one or two
relationships give the desired meaning.

For example: It is better to use locative or time relationships so that you can get 'At
location', 'In location' automatically.

7.11 Creating passive verbs

A verb is in the active voice if the subject is the doer of the action and a verb is in the
passive subject is the object of the action or it does not have a subject at all. For
example:

Who assigns projects?
Managers assign projects (assign in the active voice)
What were assigned by the managers?
The projects were assigned by the managers (assign in the passive voice)

To customize a verb in the passive voice one should create a verb and give it a term
in the active voice.

From the Verb complement box, choose the transitive form of

'Who assigns what'.

An object is needed to form an object relationship between the verb locate not
between the projects and the verb assigned, choose the relationship

What is assigned? projects.?

From the Relationships windows select the relationship

'Who assigns? manager'

Copyright, all rights reserved

83

between manager and the verb assigns.
A subject relationship.

Verbs in the passive voice can be easily recognized by a verb in the past participle
preceded by the verb ' TO BE' Example:

is driven, was driven, were driven, has been driven

See Cases 9, 10, and 11 for more information on Verbs.

Copyright, all rights reserved

84

8. CUSTOMIZATION PHASE 3 - EXTENDING THE
CONCEPTUAL MODEL
Now you have completed implementing the main concepts in your model, including
adding the main verbs you want to use to ask questions. Now you will extend you
model by adding:

• Subclass entities

• Instance entities

• Adjective entities

• Special information entities

Adding these entities will enable you to expand your language coverage and ask
questions more naturally.

8.1 Creating subclass entities

Subclasses will let you select certain subsets of data values or subsets of larger data
sets on the basis of some property, quality or criterion, and it will let you do so by
using language to refer to these subsets.
There are three kinds of subclasses:
1. A subclass may refer to a column of data values all of which are subsets of

another column of data values. Often these are inclusion dependencies identified
in table mode. They always represent a concept different from the concept
represented by the super-type. The SQL for these subclasses are generated by
the CT.

2. A subclass may refer to a subset of data values in a single column on the basis of
some quality, property or criterion. The idea of creating a subclass is to select all
those rows in the table that, represent this quality, property or criterion. In this
case the idea of subclasses depends on the WHERE clause in a SQL statement.
An example of a subclass is to create the entity 'administrative employee' as a
subclass of 'employee'. The Natural Language Engine should in this case
produce SQL that will look through the table and select all employees that work in
administration. For example, it might check all employee numbers and
departments selecting those where DEPT = 'ADMINISTRATION'.

3. Subtypes also refer to subsets of larger data sets represented by a composite
entity. When creating a subclass of a composite entity all of the components of
the subclass may be the same as the structured entity except at least one. Note:

a. A subclass of a composite entity is also a composite entity.

b. At least one component of a subclass of a composite entity must be a subclass
of a component of a composite entity. For example, if you have an composite
entity 'address' consisting of 'street', 'city' and 'state', and you create another
composite entity 'california address' that is a subclass of 'address', then 'california
address' will consist of 'street', 'city' and a third entity 'california'. This entity is a
subclass of 'state', which is a component of 'address'. In the 'california' entity you
would put the SQL which would select all addresses where STATE = 'CA'.

Copyright, all rights reserved

85

Note: The order of the components of the subclass of a composite entity must be the
same as the order of the components of the super-type. For instance, if 'address'
consists of 'street', 'city' and 'state' in that order, then 'california address' must contain
'street' and 'city' in the same order. The entity 'california address' should also contain
an entity CA state as mentioned above.

Subtypes are usually classified as a subclass of the entity that they are subclasses of
(selecting rows from). So, 'manager would be classified as a subclass of the
employee entity. An exception to this rule might be identifiers that are subclasses of
other identifiers. Unless a term is required in the application for the identifier of a
subclass, subclass id can be classified at the same level as super-type_id.

A subclass inherits the relationships defined for its class. If a product has a price,
every subclass of product (such as tool) has a price. Any relationship that includes a
preposition is inherited by a subclass (subclass) only if the subclass has the same
preposition defined.

8.2 Creating identifiers for subtypes

A subclass may have the DB image directly linked to it by writing SQL when the
entity is defined, or it may be linked to an identifier which has the DB image specified.
Maintaining conceptual clarity is the main advantage for creating an identifier for a
subclass.

So, if 'administrative employee' is a subclass of an 'employee' table entity and this
table has an identifier, then the 'administrative employee' subclass may also have an
identifier. If, on the other hand, 'administrative employee' is a subclass of the
'employee' column (and this column does not have an identifier), then the
'administrative employee' subclass will not need an identifier.

The identifier of a subclass does not have to have a term, and it should be classified
as an identifier. It must also be connected with the subclass, and the identify relation
must be selected.

Note: The SQL of a subclass may be written to the subclass itself or to the identify
entity that identifies the subclass. Normally, we would write the SQL directly to the
subclass. However, for the sake of clarity, it may be useful to make a distinction
between a subclass and an entity that identifies a subclass. This is especially
relevant when creating subclasses of structured entities that are also structured
entities.

See Case 13, Ambiguous Data and Case 14, Subtypes of Entities with Multi-Column
Keys

8.3 Creating instance entities

Instance entities are similar to subclass entities. They allow you to access specific
subsets of information with specific language terms. But there are some special
features of instance entities:

Copyright, all rights reserved

86

• Instance entities refer to data values in a single column of a single table in the
database

• Instance entities are specially created to handle coded data values.

• Instance entities are created to give the coded data values meaning in natural
language.

While an instance entity can be created from any combination of codes specified in
the WHERE clause of the DB image, the default status of single-valued instance
entities is disjoint, i.e., they do not intersect. For example, the subclasses, 'good
employee' and 'senior employee' may intersect, but 'men' and 'women', instances of
employees based on data values 'M' and 'F', do not.

Note: Instances may be created from data values that carry information as flags,
such as 'M' and 'F' for 'male' and 'female', or actual codes, such as 'ADM' for
'administration'.

When specifying language terms for instance entities, you are allowed the same
linguistic options as for subclasses.

8.4 Writing DB images

This section describes the form of SQL statements that may be used to specify the
database representation of entities.

General constraints
The syntax of SQL statements that can be used within Ergo entities are subject to
these general restrictions:

• The SQL for an Ergo entity may only consist of a single SELECT statement.
Consider creation of structured entities if more than one column is desired.

• The SELECT statement can return only a single column or a single expression.

• The names of tables or views must be specified with the name of the creator and
with a correlation name.

• A column is specified by its correlation name and column name. Ergo uses this
for SQL optimization.

• Host variables may not be used.

• GROUP BY, HAVING or ORDER BY clauses are not permitted.

• Concatenation and Sub-strings are not permitted.

An example of a valid Ergo entity SQL statement is:
SELECT X1.ID FROM EPE.STAFF X1 WHERE X1.JOB = 'CLERK'

Note: Refer to Customization Users Guide Handbook for a complete discussion on
this subject.

When writing SQL to an entity consider these points:

1. If you want to select rows from a table entity (the employee table), the SQL
should look something like this:

Copyright, all rights reserved

87

SELECT x1.<table identifier>
FROM <creator user id>.<table name> x1
WHERE x1.department = 'ADMINISTRATION'

The < table identifier > is the column that identifies the table. You have to specify the
database name for the table identifier in the SQL, and not the name or term that you
have given it. If the table has more than one identifier, you should only specify one of
the identifiers in the SELECT statement and not the composite entity or more than
one of the identifiers. The < creator user id > . < table name > is the database name
for the table. This is the same name that you saw for the table when you listed it in
the ADD TABLES window in rework table mode. x1.department is the database
name for a column in the < table name > table that tells us if an employee works in
administration or not.

2. Often when databases are in non-3NF, it is desirable to create subclasses by
specifying directly a subset of data values in a column. If you want to select rows
from a column entity (for example the 'salaries' column), the SQL for 'managerial
salaries' could look something like this:

SELECT x1.<column name> (= salary)
FROM <creator user id>.<table name> x1
WHERE x1.manager_flag = 'Y'

The <column name> is the database name for the column, in this case 'wage level',
that you want to select rows from. The <creator user id> . <table name> is the
database name for the table that the <column name> and 'wage level' is in. If
'manager_flag' and <column name> (= salary) are in different tables then the SQL
would look like this:

SELECT x1.<column name>
FROM <creator user id>.<table for column> x1,
 <creator user id>.<table for manager_flag> x2
WHERE x2.manager_flag = 'Y'

8.5 Creating adjectives

Adjectives are modifiers of nouns. In Ergo an adjective entity describes a quality or
characteristic of another entity. For example, 'senior' in 'List the senior clerks',
modifies the entity clerk. Adjectives work in principle like subclass entities. The
difference is that the term defined to the adjective entity will always be used as a
modifier to a noun entity. Thus an adjective entity specifies a subset of the data
values represented by the concept it modifies on the basis of some quality, property
or criterion. There are two types of adjective customization techniques:

1. The specific adjective: This adjective corresponds to a triangular entity in the
model with a DB image, and whose term is specified to be an adjective. When a
model reflects a 3NF DB, this type of adjective is usually used when the noun entity it
modifies exists as a table or column in the database, or as a sub-class in the
conceptual model. It is used only to qualify that particular entity. In this case, the

Copyright, all rights reserved

88

adjective is classified as a subclass of the noun it modifies. For Example:

Figure 37 Defining an adjective entity

The years column in the STAFF table contains the number of years that an employee
has been working in an organization. To allow questions like "Who are the senior
employees", we create an entity and specify an adjective term, 'senior'. Just like a
subclass, we specify a DB image for this entity to select rows that qualify the
information in accordance to the SQL modification, for example, WHERE X1.YEARS
> 5.

3. The implicit adjective: This type of adjective is specified when we process any
entity and, in specifying its term, select it as the compound term option, ADJ +
NOUN. For Example:

Copyright, all rights reserved

89

Figure 38 Defining an implicit adjective

Note: All subtypes of a noun modified by an adjective entity inherit the modification.

8.5.1 Prepositional complements:

You can define prepositional compliments to accompany the adjective. If we have
defined the adjective experienced and we wish to use it is the context 'experienced
IN', then, we choose a corresponding syntax of 'someone/ something is experienced
IN'. This enables queries such as 'List sales-representatives that are experienced in
accounting.'

Copyright, all rights reserved

90

Any other subclass of the concept that the adjective modifies inherits the properties
of the adjective. For instance, if we had the adjectives 'profitable' and 'western' that
modify the entity 'location' then we can ask for the 'profitable western location'. If
'california location' is a subclass of location then we can ask 'list profitable, california
locations'.

An adjective is inherited by the super-type of the subclass entity that the adjective
modifies and vice versa, the subclass inherits the adjective that modifies its super-
type. This is on the condition that the entities INTERSECT each other or are not
DISJOINT with each other.

The following diagram illustrates this:

< The figure will be added in a later release >

Figure 39 Inheritance

Using the above example, we can ask the questions
Who are the senior clerks
Who are the senior sales-representatives
Who are the senior employees

If Senior modifies clerk and is defined as a subclass of clerk, we can still ask the
same questions, because adjectives can be inherited also by the super-types.
Who are the senior sales-representatives
Who are the senior employees
Who are the senior clerks

IF we wanted to limit the adjective only to Clerk, then Senior should be defined as
DISJOINT to sales-representatives in the INTERSECT definition.

8.6 Handling adverbs

An adverb modifies a verb or other adverbs and adjectives. Example:
She sang extremely well (modifies the adverb well)
He usually works hard (modifies the verb works)

Adverbs can be distinguished in form, the most common of which is its ending in LY.
However, note that there are adverbs that are not of this form such as FAST as in 'He
ran FAST', the adverb WELL, as in 'He played WELL'.

In handling adverbs, we should first understand the context of how the adverb is
used. It is very similar to the way an adjective is customized. We create an entity that
imbeds the meaning of the adverb, and classify it as a subclass of the NOUN which it
the doer of the action (verb). Like a subclass, and an adjective, the adverb concept,
distinguishes a new "concept". For Example, 'Which Employees usually work hard', is
conceptually different from 'Which employees usually work slow'. The difference in

Copyright, all rights reserved

91

customization between the adjective and adverb is that the adverb (term) is
customized as part of the verb it modifies. In the conceptual model, the adverb is
created between the verb and the noun that is the doer of the verb.

Key important steps to observe:

• "Adjectivize" the adverb and create a subclass concept embodying the adjective
form.

• Customize the adverb as part of the verb

• Link the subclass and the verb (containing the adverb)

• Select appropriate syntax

• Consider other grammatical contexts

< The figure will be added in a later release >

Figure 40 Illustration of the adverb work HARD

See Case 11.

It is important to create a verb that contains the Adverb term itself. The verb is then
customized as USUALLY WORK HARD. The concept (Entity) of the adverb need not
have same term as the verb. Since subclasses HARD WORKER inherit the primary
term of its super-type (employees). The subclass (adverb) contains the SQL to select
the appropriate qualifying rows.

With this set up we can now ask the questions

Who usually work hard?
Which sales representatives usually work hard?
Which manager usually works hard?
(assume salesrep and manager are a subclass of employee)

< The figure will be added in a later release >

Figure 41 Usually working hard adverb

8.7 Creating special information entities

When customizing, the customizer often focuses on specific information he wants
from the database, usually qualified in some way. This information may be:

• An entire table

• An entire column

• Several columns from one table Columns from more than one table

• A subset of data values from a single column qualified by a range of those values

• A subset of data values from a single column qualified by a range of data values
from another column

Copyright, all rights reserved

92

• A subset of data values from more than one column qualified by a range of those
values

• A subset of data values from more than one column qualified by a range of data
values from another column

• A column from one table qualified by a set of data values in another table

• A subset of data values from a single column qualified by a range of data values
from a column in another table

• A subset of data values from more than one column qualified by a range of data
values from more than one column in another table

• A subset of data values from a single column qualified by a range of data values
from more than one column in another table

• A subset of data values from more than one column qualified by a range of data
values from more than one column in another table

Entities can be created to handle all of these needs.

8.7.1 Entities referring to DATE data

Queries including 'last year', 'last month', etc.

8.7.2 Entities referring to numerical data

1. Counted-by relations:
The counted by relations are used for columns that express an amount or a quantity.
This relationship can be used if you have an entity 'inhabitants' that list the number of
people for each country and you want to ask 'how many inhabitants does Sweden
have.'

In order to make a counted-by relation you need to create a new entity. This entity
can have the term 'population' for example. The 'population' entity has to be classified
as a QUANTITY. A relation is then set up between the 'inhabitants' column and the
'population' column, and the relation 'How many INHABITANTS are there?
POPULATION' is selected.

See Case 15, Entities With Numeric Data - Counted By Relations.

2. Measured-by relations:
The measured-by relation enables you to rank the instances of the entities. You will
be able to ask questions like 'List the top ten sales reps.'

If we assume that we have a 'sales' concept which possesses a sales amount entity
and a salesrep entity, then we can create the MEASURED-BY relation between the
two entities. Sales Amount will be classified as a quantity. Thereby, the instances of
the entity 'sales rep' will be measured by the instances of the entity 'sales'.

See Case 8.

3. Unit-of-measure entities:
An entity classified as a quantified property has a corresponding unit of measure

Copyright, all rights reserved

93

associated with it. For example, if we classify an entity as 'value' we can choose a
unit of measure (UNIT OF MEASURE WINDOW) dollar corresponding to this. If we
need to CREATE new units of measure that are, not available, we have to create
new entities to embody this new type of unit of measure. We then classify these
entities as a UNIT-OF-MEASURE.

Unit-of-measure entities are used to specify the unit that the instances of an entity
should be measured in. If we wanted to measure sales in Pounds then we would
have to create a unit-of-measure entity. The unit-of-measure entity would be
classified under unit of_measure value and given the term 'pound'. Sales would then
be classified as a subclass of value, and the UNIT OF MEASURE 'pound' would be
specified for this classification.

See Case 3. Entities with Numerical Data - Unit of Measure.

Copyright, all rights reserved

94

9. CUSTOMIZATION PHASE 4 - ENHANCING THE MODEL
AND REFINING THE SYNTAX
Now that all the basic entities and relations have been created, it is time to identify
What kinds of questions can be asked
What kinds of questions users still need to be able to ask
What can be done to the model to meet the users' needs.

These tasks remain to be done:

Asking test questions
Pre-customizing for further work
Adopting a customization strategy for model enhancement
Enhancing the model
Testing the model

9.1 Asking test questions

You should now test the basic model at this point. You should bring back the end-
users to determine once again what kinds of queries still need to be supported. If
special query areas or themes can be identified - e.g., sets of queries focused on
payroll information, education information, or customer service information, to name
a few - then this will be helpful, because the customizer can set up query logs, which
will make it easier for the users to ask questions.

Note: The customizer must make clear to the users that they cannot ask questions
any way they want. They can only ask questions in accordance with what the
customizer has made possible while developing the conceptual model. The
customizer must tell the users what kind of questions they can ask!

At this point, you should be able to ask these kinds of questions:
1. Queries asking for all instances of a concept
Example: list the employees
2. Queries using the possessive relationship for all instances
Example: list the salaries of the employees
3. Queries using the possessive relationship for a
Example: what is smith's salary
4. Queries using a composite entity
Example: list the addresses of the employees
5. Queries using a subclass entity
Example: list the price of the electrical products
6. Queries using a verb
Example: which customers ordered electrical products
7. Queries using an adjective
Example: what products are electrical
8. Queries asking for a sum of instances of a concept
Example: how many employees are there
9. Queries for a DATE interval
Example: which customers ordered electrical products in June

Copyright, all rights reserved

95

10. Queries using the locative relationship for all instances of a concept
Example: who works in new york
11. Queries using the temporal relationship for all instances of a concept
Example: how long has smith worked as a clerk
12. Queries using backward possessive adjective reference
Example: list the employees and their wage level
13. Queries asking for a measure of a particular value
Example: list the top 5 customers
14. Yes/No queries for a single instance
Example: Is smith a clerk

If you cannot ask these types of queries and you expect to be able to, there is
something in the model that should be corrected. If problems arise, you can use the
CT Reporting Facility to produce a report of your model. You can study the
information about the entities and relations to see if there is anything that should be
changed. Very likely, you have done most things correctly up to this point.

9.2 General rules of thumb for asking questions

Here is a summary of general rules that should be followed when you ask questions:
1. You can use the SQL wildcards, % and _: in queries just as you might if writing

SQL. Thus, for example, you can ask,

list employees with names like s%

2. If a term or name contains an apostrophe ('), then the whole term or name must
be placed between single quotation marks, e.g.:

who works for 'o'brien'

3. In order to create charts, at least one term in the query must refer to a column in
the database that contains numerical data values.

4. If you want to ask a query, ordering the results, like

list products by year by division by manager by orders

you can create a composite entity consisting of the 'year', 'division 'manager' and
'order' entities. If you give that composite entity the term 'product order' then you
can ask:

list the products by product order

and have the results ordered.

5. Many queries you want to ask may presuppose something. For example,

who wrote more prolog modules than lisp modules

can presuppose that someone writes both prolog modules and lisp modules. Ergo

Copyright, all rights reserved

96

provides an answer based on this presupposition. If you want the case where
someone writes at least 1 prolog module and no lisp modules (hence more prolog
modules than lisp modules), you must re-phrase your question:

who wrote at least 1 prolog module and no lisp modules

However, the current version of Ergo will not give you all this information in the
same report.

6. You should strive for logical clarity. If you ask,

who works in new york and los angeles

you probably mean

who works in new york or los angeles

assuming someone does not work in both places. Ergo is usually logically strict
with these kinds of queries.

7. Modifiers and modifying clauses should be concatenated with the term modified.
For example:

of all new policies that cancelled before the year was out, how many that
were effective in 1990 were cancelled for non-payment of premium.

has a phrase, 'effective in 1990' split from the term it modifies, i.e., policies. Place
modifying phrases next the term it modifies when it is correct grammatically. Here
you can also re-phrase the question by putting 'how many' at the beginning and
by changing the idiomatic expression 'year was out' to 'end of the year':

how many new policies effective in 1990 that cancelled before the end of the year
cancelled for non-payment of premium

8. Avoid idiomatic expressions in your queries unless you explicitly customize them.

9. Arithmetic calculations can be made directly in the query. You can as

list number of managers / number of employees

to get the ratio of managers to employees.

10. You cannot embed a comparative expression in one element of a set of
coordinated noun phrases. For example, you cannot ask

How many programmers either programmed more modules than smith or
programmed in prolog

Here, 'programmed more modules than smith' is a comparative phrase that is

Copyright, all rights reserved

97

embedded in 'either ... or' construction. You must ask two questions here.

11. You can refer to data values in a column by specifying the data value before the
term of the concept representing the column. For instance, if 'product' is the term
for the 'product' column, and 'motor' is a data value in the 'product' column then
we can ask a question like: 'List motor products'.

12. If you want to refer to data values that contain words that are in the base
dictionary, then the data value has to be in quotes in the queries. For instance
'New York' has to be in quotes since 'new' is in the base dictionary.

13. In order to process YES/NO-type questions involving subtypes the verbs of the
questions have to be directly linked to the subtypes, i.e. the subtype will not
inherit the verb relationship from the super-type for YES/NO-questions.

14. It is not possible to use backward reference in a query that starts with 'Who are...'.

9.3 Pre-customizing for further work

After identifying what has been done, you have to determine what must be done. You
have to do some pre-customization work. The tasks include:

1. Identifying and categorizing questions you want to make work
2. Identifying what you have to do to the model to enhance your language coverage
3. Choosing a customization strategy.

9.3.1 Identifying and categorizing questions

You now know that a lot of questions work, but there are a lot more that users want
to ask. You have to identify these. In addition, you should categorize the questions
according to the themes or subject matters. There are two reasons for this:

1. You can get the application out to your users faster if you create usable query

logs as fast as possible, while you customize incrementally.

2. You can design mini-conceptual models for these query categories, enabling us
to identify:
- the entities you have to work with
- the entities you have to create
- the relationships you have to define
- the language terms you need to specify.

The end-users can be brought in again to guide this process.

Note: The syntactic (grammatical) structure of each query should be studied
carefully. Some questions may have to be changed before you can decide how to
enhance the model to accommodate them. You should strive for generic solutions
wherever possible.

Copyright, all rights reserved

98

9.3.2 Mini-modeling

While designing a complete conceptual model for the entire database in advance of
customization may be ineffective, especially for large databases, modeling a cluster
of entities for the purpose of enhancing language coverage is usually useful at this
point. As soon as you have your queries categorized according to theme or subject
matter, you can take a category and:

• identify the entities the queries are related to

• identify what entities you have to create

• identify what conceptual and language relations you have to define

• determine what additional language terms you have to add to meet the users'
needs.

Mini-modeling clusters of entities makes model enhancement much easier. The part
of the model you are working with is limited, making it easier to comprehend
conceptually what has to be done. Your customization goals at this phase of the
process becomes clearer, especially when needed queries have been identified. And
any potential errors made can be corrected quickly.

9.3.3 Depth-first customizing

So far you have followed a breadth-first customization strategy. Very likely, you have
done most things correctly. You have also probably saved your backed up your file,
so you will not have to do all this work again.

Now what we want to do is identify a cluster of entities and customize them as
thoroughly as possible to provide maximum language coverage, based on our
understanding of our end-users' needs and our understanding of the limitations of
Ergo. It is very efficient at this point to start using a depth-first customization strategy.
The advantages of this include:

• Enhancements to the model and language coverage will have a clear focus.

• Usable query logs can be created faster.

• Incremental results known to be correct can be saved and returned to should
errors be made later.

9.4 Model enhancement -- adding to the model

The goal of this phase of the customization process is to expand language coverage.
Expansion of language coverage can either be achieved by creating new entities and
relationships or by refining existing entities and relationships. In model enhancement,
the goal is to expand language coverage by adding new entities or relationships.
The model enhancement tasks include:

1. Adding entities
2. Adding new conceptual relations
3. Adding language terms
4. Adding new language (syntax) relations

Copyright, all rights reserved

99

9.5 Adding entities

Very likely you will want to add entities to your model so you can link language terms
to tables, columns, or data values in your database. You may need to add these
kinds of entities to your model:

• New base entities

• Dummy table entities

• Composite entities

• Subclass entities

• Instance entities

• Special information entities

• Verb entities

• Adjective entities

• Adverbial constructs

What you need to add depends on:

• What kind of questions you want to ask

• The structure of your database

• What you already have in your model.

•

9.5.1 Adding new base entities

Adding a new base entity to the model suggests you have a concept that refers to a
set of data values in a column. You may want all the data values, or only a subset of
them. If you ask a question using language terms associated with the new concept,
you expect this information returned.

Remember: all new base entities added to the model require a DB image. You can
write the DM image directly by selecting the SQL option in the Define entity dialog
box, or you can create a separate identifier with the DB image and link it to the new
entity.

The DB image of any entity can only refer to a single column in the database. If your
concept requires limiting the data values in the column on the basis of criteria
elsewhere in the database, these are specified in the WHERE clause of the DB
image. If the limiting criteria depend on information in another table, you should
specify the appropriate table joins in the DB image.

The DB image may also be an operation on data values from more than one column
that would appear in a report as a single column. For example, 'income' may consist
of 'salary + commission'. As long as the result would appear as a single column in a
report using SQL, you can specify such operation in the DB image. The major
exception to this is character SUBSTR concatenations.

9.5.2 Adding dummy table entities

If you database is not in 3NF, then your database may contain an identifier or name
of a concept that itself is not explicitly found in the database. If this is the case, then

Copyright, all rights reserved

100

very likely you will want to add and that would correspond to a table if the database
were normalized. However, note these subtleties:

• If there is an identifier without a name, for example, a PURCHASE-CODE,
identifying a purchasing method, then the values can be treated as coded data
values, and instance entities may be created for them.

• If there is only a name, for example, CONTACT, embedded in a table, then the
identifying DB image would contain a SELECT DISTINCT for the concept
represented by the new entity. A problem may arise if more than 1 instance have
the same name.

• If the table contains both an identifying column, e.g., CITY_CD, and a name
column, e.g., CITY, then the dummy table entity would not have a DB image itself,
but would get one after it is linked to the identifying entity. In addition, in this case,
it would be this dummy table entity that enters into relations with other entities.

9.5.3 Adding composite entities

You can add composite entities for

• concepts related to information in more than one column, e.g., address,

• concepts related to subsets of information in more than one column, e.g., chicago
address,

• information you need from more than one column that would entail asking
questions difficult to ask in natural language, e.g., a monthly report consisting of
several columns, and

• structured reports, using composite sorters in the query.

Sometimes there are simple concepts associated with composite entities, as for
addresses. Other concepts for complex information may be clear, as for monthly
reports. But sometimes you have to be inventive to access exactly the information
you want.

9.5.4 Adding subclass entities

If a subset of a set of data values has a particular meaning to users who ask
questions, you can create subclass entities and add new language terms to the
application dictionary. Remember that if you create a subclass of a composite entity,
the order of the data values referred to by the subclass must be the same as those
referred to by the super-class.

9.5.5 Adding instance entities

You can create instance entities to give specific language meaning to coded data
values. The codes often have well-known meanings for users, who would like to use

Copyright, all rights reserved

101

terminology rather than codes in their queries. It may also happen that users
remember the terminology but not the codes, especially in large DBs. Thus, you can
expand language coverage by adding instances.

Remember: There is no functional difference between instance and subtype entities,
since their DB images are written in accordance with the same principles. The engine
processes them both exactly the same way. However, since instance entities are
designed to handle coded data values, they are treated as disjoint by the engine. You
can also select instances as a component of a composite entity.

Subtype entities are not treated as disjoint because data values associated with their
DB images can intersect.

9.5.6 Create special information entities

You can create special information entities for

• Units of measure

• Arithmetic calculation

• Date expressions, like ‘last month’

Often you want the database information in a special form. This often involves putting
a special SQL in the information entity. For instance, you might need to add a 'base
salary' column to a 'sales commission' column and call that 'salary'. To do this you
would have to create an information entity called 'salary' where you would write the
following SQL:

SELECT X1.BASE SALARY + X1.COMMISSION...

Information entities are especially useful for arithmetic data.

9.5.7 Adding verbs

Only a few basic verbs like 'to be' or 'to have' are contained in the base dictionary of
Ergo. All other verbs have to be customized.

9.5.8 Adding adjectives

Adjectives can also greatly enhance the model by defining language terms for subset
of rows in a column or set of columns. Adjectives are usually used in conjunction with
subtypes, and adjectives can either be defined within the subtype (in the terms), or
separately as an adjective entity.

9.5.9 Adding adverbial constructs

Ergo does not directly support the use of adverbs, but there are ways, in which users
can used adverbial constructs in queries. As adverbs are modifiers they also denote
a subset of rows in a column or set of columns. They can therefore be customized
similarly to adjectives by using subtypes.

Copyright, all rights reserved

102

9.6 Adding new conceptual relations

Some entities may need more than one classification. Most entities however should
only have one classification; so it might be necessary to change the classification so
that all the appropriate relationships can be defined.

9.7 Adding language terms

If there is no entity representing the concept, create a new entity with the appropriate
term. If there is an entity representing the concept, then add a synonym language
term to the entity. Note that if there are more than one entity with the same term, and
these entities have similar language relationships, multiple paraphrases will be
generated. Terms should therefore be as distinct as possible to avoid ambiguity.

9.7.1 Adding new language (syntax) relations

Language relations need to be specified for each type of query that you want to ask.
If existing relations do not cover the query, new relations need to be specified.

As you work with the model, you can refine the syntax by:

• Adding new conceptual relationships to existing entities.

• Defining new language relationships between existing entities.

• Adding new prepositions.

9.8 Types of questions

In this section we take a look at some of the kinds of questions that can be asked,
together with customization notes and comments concerning limitations. This list is
not exhaustive. The list could have been presented in a different way. However,
considering that language is infinite in scope, our intention is to provide a sense of
the kinds of questions you can ask with Ergo, and what you have to think about while
customizing. The questions below are divided into three categories:

1. Imperatives

These questions start with an imperative verb (List, Show, Display). The subject
of these questions is the assumed 'you'.

2. Direct Questions
These questions contain a subject and a predicate and can either be WH-
questions (When, Where, What, Who) or Yes/No-questions (Are there...).

3. Generalized Query Types
These questions are categorized according to different linguistic categories.

Here is a summary of general rules that should be followed when you ask questions:

9.9 Imperatives

An imperative is a directive to do something. It has an omitted, but implied, subject,
you, and a verb phrase. The verb phrase always consists of verb + direct object. The
verb has its imperative form.

Copyright, all rights reserved

103

Imperatives
Note: In Ergo, the main verbs that can be used in imperative queries are:
list print type find
give me give show me show
tell me display fetch get
locate identify select name
search for report extract

The verb phrase may contain a complement. And the direct objects may reflect any
noun related to any entity in the conceptual model, provided the entity has a DB
image or consists of components having a DB image. The objects may also be
modified by adjectives or complementary phrases. In Ergo the direct objects can be
represented by entire phrases. Thus, in the question,

list the California customers

Ergo interprets the phrase, 'California customers', objectively, i.e., as an object, if it
represents a complete term linked to a single entity.

How the NLE works - Things to remember
1. The NLE breaks a query down into its components.

2. Any word or phrase specified as a term by the customizer is interpreted as

being a component of a query. If a term or name contains more than one part,
all the parts together make up the component.

3. Queries should be as straightforward and direct as possible. Queries should
not include obvious ambiguities unnecessarily, since processing uses
resources.

4. A query should not contain an evaluation unless it has been specifically
customized. Ergo will not be able to figure out who does a good job, unless it
is told.

5. The classification of the entity associated with a term determines the term's
part of speech: entities linked to verbs are classed as events; nouns anywhere
else; and adjectives as a subclass of the nouns they modify or as properties.

6. The part of speech of a term in the application dictionary determines how it
can be used in queries.

7. Queries are turned into a logical form. So you should remember about this
when you ask your queries. The more logically clear queries are, the easier it
is for the NLE to process them.

8. The information in a query can be ordered by one or more concepts. The more
concepts that a query is ordered by, the slower the processing of the query will
be. The NLE will also not create any paraphrase for queries that are ordered
by many concepts. This does not mean that you cannot order by several

Copyright, all rights reserved

104

columns. If you want to order by several columns, you can use a composite
sorter, if the order is fixed.

9. To process YES/NO-type questions involving subtypes, the NLE requires that
verbs in the questions be directly linked to the subtypes, i.e., the subtype will
not inherit the verb relationship from the super-type for YES/NO-questions.

10. It is not possible to use backward reference in a Wh-query.

11. Conjunctions are handled in two ways by the NLE. The NLE either breaks the
query up into two queries, i.e. the query 'List managers and department' might
become the two queries 'List managers' and 'List departments', or the NLE
thinks of the query as one question. The way the NLE handles the query will
depend on how the questions is formulated and there is almost always a way
to reformulate the query to get the NLE to handle the query in the desired way.
For instance, if you ask: 'List valuable and electrical products' the only
interpretation that the NLE will generate is 'List valuable products' and 'List
electrical products'. However, by appending the phrase 'by price' at the end of
the query, the NLE will generate the paraphrase 'List products that are
valuable and expensive. Sort the information by price'. Similarly 'List products
that are valuable and electrical' will generate a broken up interpretation since it
contains a conjunction but no order-by. However, if you ask 'List valuable
products that are electrical' you will get the paraphrase 'List products that are
electrical and that are valuable'. This is because there is no conjunction in the
query.

9.9.1 Examples of imperatives using single objects

Here the verb has only one object.

Examples:

list employees
show the weekly sales information
draw a histogram of the sales-representatives' income

Customization notes: The database-related terms used in the queries have to be
specified in the application dictionary. In the second example, 'weekly sales
information' could be a structured entity consisting of several components. These
components must have DB-images. In the third, Ergo will display a graph. Here the
direct object of the imperative, namely, 'histogram', is found in the base dictionary.

Limitations: The DB-image of a component of a structured entity like 'weekly sales
information' cannot contain entities with column functions.

9.9.2 Examples of imperatives using compound objects

Here the verb has more than one object.

Examples:

Copyright, all rights reserved

105

list the orders and products
show salaries + commissions
display 1Q sales and 1Q profits

Customization notes: In the first example, if 'customers' and 'account numbers'
refer to information in different tables, a join-path must exist between the two tables.
In the second example, each salary and commission together with the sum of the
two, will be displayed for each row in the table. The third example generates a two-
part query, one report for 1Q sales and another for 1Q profits.

Limitations: Without further qualification, the use of the conjunction 'and' generate
two-part paraphrases and reports.

9.9.3 Examples of imperatives using compound objects and backward
reference

Here the possessive adjective refers back to the object of the verb.

Examples

List managers and their staff
Show the divisions, products, and their orders by division
Display the employees and their total wage breakdown

Customization notes: A simple coordinated noun phrase like ‘managers and their
staff’ will generate two-part queries. In the second example, the addition of the
phrase, 'by division', will lead to a single-part paraphrase with the report sorted by the
division column of the table. In the third example, 'total wage breakdown' can be a
structured entity consisting of, for example, 'salary' and 'commission'. The use of
anaphora implies that correct possessive relationships have been defined between
all the entities referred to in the query.

Limitations: Imperatives with noun phrases having more than two components, as in
the second example above, often cannot be paraphrased. However, you can still
process the query and generate the correct SQL.

9.9.4 Examples of imperatives with subordinate qualifying clauses

Here the objects are modified by adjectival clauses.

Examples

List employees who work on project 1401 and code in fortran
Display branches and managers working in the new york region by branch
List programmers who code in assembler and pascal

Customization notes: At the moment, the NLE treats coordination of compound
subjects and objects differently. Thus, in the second example, appending 'by branch'
to the query will generate a single paraphrase and group the report by branch. If you

Copyright, all rights reserved

106

leave out 'by branch', you will get a 2-part paraphrase. (This will very likely change in
a future version of the product.) However, in the third example, you will get a 1-part
paraphrase because the coordinated nouns, 'assembler' and 'pascal' constitute a
(compound) prepositional object, which the NLE can process.

Limitations: Compound subjects with compound predicates, an extension of the first
example, do not always work. Thus, the NLE may fail if you ask, 'list the managers
and employees who work on project 1401 and code in fortran'.

9.9.5 Examples of imperatives using prepositional phrases

The prepositional phrases may refer to time or place.

Examples

List the planes from France
List the employees at the Chicago office and their salaries
Show the salaries of the employees in June in a pie chart

Customization notes: The prepositional relationships must be specified through
classification or defined using the Syntax option in the Define entity dialog box. In the
third example, 'head office' happened to be a data value. If you want to use 'Chicago
office', where 'Chicago' is the data value as in the second example, a subtype entity
for 'chicago office' has to be created. However, we could say, 'list the employees in
chicago and their salaries' because 'in', which syntactically agree with 'chicago' in this
example, is passed on by classifying department as a place.

Limitations: For charging limitations, see Case Study 2 below.

9.10 Direct questions

Direct questions, also called Wh-questions, use the question words, who, what,
when, where, and how. How is counted among the Wh-question words. Direct
questions require a verb. The verb phrase may be active or passive, transitive or
intransitive.

9.10.1 Examples of questions using single subjects

In active-voice queries, the subject does the action. In passive queries, the subject is
acted upon.

Examples

What salesmen sold more than 10 policies in June
How many product were ordered in June
Are there any managers that earn more than 50000

Customization notes: In these examples, the correct verb complement must be set
up. In the third example, you can follow up with a refer-back question, 'who are they',
and get the right answer.

Copyright, all rights reserved

107

Limitations: In direct questions, you cannot append 'sorted by ...' or 'by ...' at the end
of the query.

9.10.2 Examples of questions using compound subjects

Here there is more than one subject.

Examples:

Which managers and salesmen made more than 100000 dollars last year
What customer and branch office placed sales order 122343
Did any managers or staff receive the merchandise

Customization notes: In the first example, using 'last year' assumes that the date
column is a DB2 DATE data value. Because 'last' is not in the base vocabulary, 'last
year must be customized as a subtype entity of the date column.

Limitations: Compound subjects will always generate paraphrases with more than
one part.

9.10.3 Examples of questions using single objects

Examples

How many programmers wrote assembler modules
Who is Smith's manager
Did any customers order motor products

Customization notes: The second example assumes that a possessive relationship
has been defined with 'manager. In the third example, 'motor' is a data value,
referring to a product description classified as a name.

Limitations: In the first example, the NLE will count the number of appropriate rows
in a table. But if the value refers to a subset of quantities, the NLE will not currently
process the query. In the third example, you cannot ask, 'how many customers
ordered motors', unless 'motor corresponds to a subtype entity. But if 'motor' is a data
value in the PRODUCT column, you can ask the as shown here. If products possess
a location, you can ask, 'show the Chicago products'.

9.10.4 Examples of questions using compound objects

Here there is more than one object.

Examples

Who programmed assembler modules and prolog modules
Did any customers from 'New York' buy hammers and saws
Who wrote 'The Idiot' and 'Crime and Punishment'

Customization notes: In the third example, The Idiot and Crime and Punishment

Copyright, all rights reserved

108

were placed between single quotes because 'the' and 'and', which are part of the
book titles, are contained in the base dictionary. This is also the case for the second
example, because 'new' can be found in the base dictionary. Otherwise, the NLE can
usually recognize direct objects of verbs, where the data values contain more than
one word or have different character lengths, as long the correct language
relationships have been defined.

Limitations: As noted, in queries, when using terms corresponding to data values
that have components found in the base dictionary, the terms should be placed
between single quotes.

9.10.5 Examples of questions using single predicates

Examples

Are there any clients in Denver
Where did flight 201 arrive from
Which calls were replied to by department managers

Customization notes: The second example has a locative of source relationship.
This is selected from the Define relationship dialog box: From where do flights arrive?
incoming airport, for example. Here, 'incoming airport' must be classified as a place.
In the third example, 'last month' must be created with the correct DB-image. Note
the passive form of this query.

Limitations: In the third example, the verb, 'reply to' has to be created because the
NLE cannot handle back-to-back prepositions.

9.10.6 Examples of questions using compound predicates without direct
objects

Here the query contains more than one verb, at least one with not object.

Examples

Who studied in California and works in New York
Does anyone work in the head office and earn less than 30000
Are there any flights that start in Los Angeles and fly via Amsterdam

Customization notes: Both verbs, of course, must be linked to the subjects.

Limitations: The syntax for queries with 'is there...' or 'does anyone...' will not always
be inherited by subtypes, as in the second and third examples. So if you want to ask,
'is there any manager who works in the head office and makes less than 30000', then
the verbs must be linked to the subtype. However, this will generate multiple
paraphrases for the single predicate queries.

9.10.7 Examples of questions using single subjects and compound predicates

Here the subject may do perform more than one action.

Copyright, all rights reserved

109

Examples

Which customers bought life insurance and live in 'new york'
Does any manager earn more than 100000 and like to play golf
How many salespersons sold motors and report to manager Smith

Customization notes: These will all work as long as the correct language
relationships have been defined. In the second example, you could customize the
verb, 'to play', and then add a synonym, 'like to play', and conjugate 'like'.

Limitations: In the second example, it is assumed that 'salary' is classified as a
number, quantity, or value. In addition, both verbs must be linked to 'manager'. The
third example requires that 'motor be a subtype (for example, of 'product'), otherwise
the query must read, 'how many salespersons sold motor products and report to
manager smith'. Many compounds generate 2-part paraphrases. For example, this
will happen if you ask, 'how many salespersons have 6 years’ experience and report
to manager smith'.

9.10.8 Examples of questions using compound subjects and compound
predicates

Here more than one subject may perform more than one action.

Examples

Did any customers and sales-representatives study statistics and live in New York
Which managers and employees work in chicago and earned a commission
Are there any staff and managers that work in finance and know SQL

Customization notes: Both subjects must be linked to both the predicated.

Limitations: Currently you cannot use a comparative with compound predicate.
Thus, for example, 'which managers and employees work in Chicago and earned
more than 45000' will not work.

9.10.9 Examples of questions using compound predicates and compound
objects

Here more than one object is acted upon in more than one way.

Examples

Did any customers buy and use hammers and saws
Which customers watch and play tennis and golf
Are there any programmers that code and test Pascal modules and PL/S module

Customization notes: Here, of course, the direct object form of the verb
complement, for example, who buys what, must be selected for each verb. The

Copyright, all rights reserved

110

assumption here is that there are two different verbs. But two verb synonyms can
also be used.

Limitations: NLE performance decreases as the number of components of the
coordinated verb and noun phrases increases.

9.10.10 Examples of questions using predicates with prepositions

Typically prepositions involve place or time.

Examples

Which communications were replied to by smith
Which accounts is Smith responsible for
Are there any products that were bought by preferred customers

Customization notes: The first example requires that a verb, 'reply to', be specified
because the NLE cannot process back-to-back prepositions. In the second example,
you can select 'responsible for something' from the Verb syntax box. The third is
example is a simple passive defined when the verb relationships are set up.

Limitations: Coordinated verb phrases in passive form will generate two-part
paraphrases. Thus, for example, 'what salaries or commissions were earned by
managers or employees' will generate a two-part paraphrase, one asking for salary
information, the other for commission information.

9.10.11 Examples of questions using strings of modifying clauses

Here subjects or objects are modified by modifying clauses.

Examples

Did anyone process the orders from the agents concerning the households residing
in the western region
What motors made in California plants were bought by new york customers
What manager confirmed the sale of property to clients during April

Customization notes: If you know your users want to ask queries like these, it is
useful to set up a mini-model of the entities involved to make sure that all the
necessary relationships are identified and properly customized. In the first example,
very likely you would select the Syntax option from the Define entity dialog box and
chose 'agents concerning something' from the prepositional complement list. In the
second example, note that 'new york' is not in single quotes. This is because 'new
york' is part of a subtype term rather than a term referring to a data value in a table.
The third example only looks tricky. Assume that 'manager confirm' and 'sale of
property is confirmed'. Select 'who confirms what to what'. Clearly, 'what is something
confirmed to' is 'client'. Finally, from the Syntax box, select the prepositional
complement, 'clients during something.' The query will now work.

Limitations: You can only define four prepositions for each noun, in two sets of two

Copyright, all rights reserved

111

each. Thus, in the first example, agents can be linked to 'orders' in two ways and
'households' in two ways, e.g., orders from/by agents concerning/from households. If
you need more prepositions, you have to create additional entities and re-define the
appropriate relationships.

9.10.12 Examples of questions using single adjectives

Examples

Are there any overdue accounts
When does the most expensive flight arrive
How many managers and programmers are senior

Customization notes: Adjectives are inherited by subtypes. This you can ask, 'are
there any overdue tax accounts', without linking the adjective to 'tax account',
assumed here to be a subtype of account. Each adjective needs the correct SQL,
usually selecting the identifying column of the entity it modified. Thus, the SELECT
part of 'senior' in the third example, would be ID, for example, and the WHERE part
would be WHERE YEARS > 5'. Note that adjectives can be used as predicate
adjectives, as in the third query.

Limitations: The NLE does not yet support the comparative and superlative forms of
the adjective. Thus, in the second example, the answer would be the same for
'expensive' or 'more expensive', unless a special entity was created for 'most
expensive'. Coordinated subjects, as in the third example, will lead to two-part
paraphrases.

9.10.13 Examples of questions using compound adjectives with single
subject

Here more than one subject or object may be modified by more than one adjective.

Examples

Which products are valuable and electrical list the new and profitable divisions
Are there any loans that are large and due yesterday

Customization notes: In the third example, 'yesterday' is found in the base
dictionary. To make this query work, you have to link 'due' to a date column in DB2
DATE data value format. Here, 'due', as a participle, works like an adjective. For
phrases like 'last week' or 'last year', you must create entities and define the correct
relationships.

Limitations: Coordinated adjectives lead to two-part paraphrases. Thus, 'how many
products are valuable or mechanical' will first ask for the number of electrical
products, then for the number of mechanical products. You could ask, using the
imperative form, 'list products that are valuable and electrical by price' and get a one-
part paraphrase. Note that if you ask, 'list products that are valuable and electrical by
product', you are asking for a sort on the same columns the report would be sorted

Copyright, all rights reserved

112

by from the beginning, and the NLE does not handle this. You could get a single-part
paraphrase, however, with 'which valuable products are electrical'.

9.10.14 Examples of questions using compound adjectives with single
objects

Here a single object can be modified in more than one way.

Examples

Who bought saws that are long and not expensive
Which policy holders own new and expensive cars
Are there any plants that made profitable products that are not expensive

Customization notes: Observe in the first example that customizing the negation of
an adjective is usually not necessary. However, this example will generate a two-part
paraphrase. To avoid this, you can ask, 'who bought long saws that are not
expensive'.

Limitations: Complex syntax like the third example may not generate a paraphrase.
But the query will be processed with the correct SQL.

9.10.15 Examples of questions using compound adjectives with compound
objects

Here more than one object is modified in more than one way.

Examples

Who bought saws and screwdrivers that are short and not expensive
Which salesmen sold profitable and small radios and TVs
Did any customers order red cars and trailers that are inexpensive

Customization notes: If only saws and screwdrivers are short and not expensive,
performance will be enhanced you create subtypes for products and link the
adjectives to them.

Limitations: Multiple compounds like these examples often will not generate
paraphrases. However, the query will be process with the correct SQL.

9.10.16 Prefaced questions

Examples

I want to know who bought saws and screwdrivers
I would like to see the products and their prices in a bar chart
I would like to know which customer placed the largest order last year

Customization notes:

Copyright, all rights reserved

113

Limitations:

Phrases you can use to preface a query:
I want to know I would like to know I wish to know
I want to find out I would like to find out I wish to find out
I want to see I would like to see I wish to see

9.11 Generalized query types

Examples of questions using transitive verbs

Examples

Which customers bought motors and serviced generators
Who completed modules yesterday
Which sales-representatives made their quotas last year

Customization notes: These examples all require that correct the verb complement
has been specified.

Limitations: As the first question indicates, you can have more than one transitive
verb in a query. However, when you have more than one verb coordinated, you
cannot embed a comparative phrase in either of the elements. For example you
cannot ask, 'who bought motors and serviced more than 3 generators'.

9.11.1 Examples of questions using intransitive verbs

Intransitive verbs have no object complements.

Examples

which customers live in new york
which students live in sweden and arrived yesterday
which prices rose or fell

Customization notes: Many verbs can be used transitively or intransitively. If you
think you may need to use an intransitive verb transitively, you should select one of
the transitive verb complements when you process the verb.

Limitations: As the first question indicates, you can have more than one intransitive
verb in a query. However, when you have more than one verb coordinated, you
cannot embed a comparative phrase in either of the elements. For example you
cannot ask, 'which students live in sweden and arrived later than smith'.

9.11.2 Examples of questions using both transitive and intransitive verbs

You can use verbs with or without complements in the same query.

Examples

Copyright, all rights reserved

114

which customers live in new york and play golf
which students live in sweden and study computer science
which prices rose last year and effected the price index

Customization notes: You could also use the same verb transitively or intransitively.
For example, you could ask, 'which customers play in new york and play golf, as long
as a transitive verb complement is selected and the relationships defined.

Limitations: When you have more than one verb coordinated, you cannot embed a
comparative phrase in either of the elements. For example you cannot ask, 'which
students live in sweden and studied more subjects than smith'.

9.11.3 Examples of questions using anaphora

Examples

List the customers and their addresses by customer
List the products and their prices by product
List the managers and their yearly salaries by department

Customization notes: These examples all require that correct possessive
relationships be defined.

Limitations: You cannot use backward reference in the same sentence with 'who
are..', such as 'who are the employees and their staff. Use the imperative form for
anaphora. Without the 'by ...' tag, you'll still get 2-part paraphrases. Paraphrases may
not be generated for queries like the third example, because 'department' is not part
of the main information set asked for. However, the SQL will be correct, as well as
the information being asked for.

9.11.4 Examples of questions using date ranges

Examples

Which products were sold between june 1st and june 15th
What was the profit for the motor division between 1/1 and 6/1
What tax accounts become overdue between 7/92 and 9/92

Customization notes: These examples all require the correct possess and time
relationships to be defined. If 'tax accounts' is a subtype of 'accounts', then 'tax
accounts' will inherit the relationships that 'accounts' has. See Case 12 below.

Limitations: The date columns in the database have been declared as e.g. DB2
DATES.

9.11.5 Examples of questions using numerical ranges

Examples

Copyright, all rights reserved

115

Who ordered between 10 and 15 disk drives
What programmers earn between 50000 and 55000 dollars
What managers have between 5 and 25 employees

Customization notes: We assume that employees is an entity in the data model. A
possess relationship has to be set up between the entity 'manager' and the entity
'employee'. 'Dollars' is a predefined unit of measure that should be selected for the
entity 'salary'. A relationship should then be defined between 'earn' and 'salary.' ‘Disk
drives' is a subtype of 'orders'. A subject has to exist for the verb 'order'.

Limitations: The entities referred to must be measurable and have a measured by
relationship defined. See Case 13 below.

9.11.6 Examples of questions asking for sums

Examples

How many people live in the USA
How many customers bought motors in October
What is the sum of the commissions for each branch office

Customization notes: The proper place and possess relationships have to be set
up.

Limitations: You cannot sum the data values of a subset of a column, i.e. you
cannot sum the data values of a subtype. See Case 2 below. Note also that summing
of rows in a database referring to subtype entities can take more system resources.

9.11.7 Examples of questions using adverbials

Examples

Which employees usually perform well
Who never orders motors
Which sales reps always make their quotas

Customization notes: The NLE can handle the negative adverbial of manner as in
the second example. Otherwise, processing adverbials require a work-around. See
Case 9 below.

Limitations: You cannot 'split the infinitive' with an adverb without customizing
around it. Thus, you cannot ask, 'who likes to often play golf. Also, you cannot
interpose an adverbial between the auxiliary part of a verb and the main verb, as in
'which product has never been ordered'.

9.11.8 Examples of questions with indirect objects

Examples

Copyright, all rights reserved

116

What products do the sales-representatives in chicago sell to customers
Which managers gave awards to their employees
What plants made motors for customers that live in New York

Customization notes: In order to use indirect objects, the verb has to be defined in
the Syntax window as being able to use indirect objects. For the last example, two
verbs have to set up: 'make' and 'live'. The relationship Customers Live has to be set
up, and the verb 'live' does not have to be defined as being able to use an object or
an indirect object. The verb 'give' is not in the base dictionary and has to be created.
In the first example, for 'sales-representatives in chicago', a possessive relation must
exist between 'salesrep' and 'location'.

Limitations: You cannot append 'by ...' to sort the report by a particular column when
using indirect objects with predicates. Thus, you cannot ask, 'list products sold to
preferred customers.'

9.11.9 Examples of with deictic time expressions

Examples

Who completed modules yesterday
Who completed modules in June
What was the profit last year

Customization notes: 'Yesterday' is in the base dictionary and therefore does not
have to be customized. 'Last year', however, does have to be created by using the
CURRENT-DATE function. See Case 12 below.

Limitations: This, that, these, and those are not parsed by the NLE. If required,
special workarounds must be customized. The date columns in the database have
been declared as e.g. DB2 DATEs.

9.11.10 Examples of questions using negations

Examples

Find sales-representatives who are not from the Atlanta region
What plants are not profitable
What employee who is not a manager earned the most

Customization notes: Normally, negation requires no special customization.
However, when using workarounds, as required by the third example, an effort must
be made to make sure the SQL is correct. In this case, the SQL for
'most_earning_employee' must include sub-select both for the case the employee is
a manager and the case when he is not a manager.

Limitations: Two negations in the same query will not work. Thus, you cannot ask,
'list sales-representatives who are not managers and who do not work in the Atlanta
region'.

Copyright, all rights reserved

117

9.11.11 Examples of questions using passives

Examples

What modules were assigned by the managers
List the salaries earned by the managers and staff at the head office'
What products were sold in the New York area

Customization notes: If 'New York area' is not a sub-type, it must have single
quotes around 'new york' because 'new' is found in the base dictionary. The entities
'manager', 'staff’ and 'products' all have to be related to the verbs as objects. No
subjects should be defined for these verbs. If the verbs are to be used in the active
voice as well, then to different verbs should be defined: an active verb with a subject
and a passive verb without a subject.

Limitations: The use of conjunctions as in the second query complicates the
processing in the NLE. These types of queries will therefore take longer time to
process. There are also two possible interpretations to a query that uses a
conjunction:

1) One query:

'List salaries earned by both managers and staff’ or
2) Two queries:

'List salaries earned by managers' and 'List staff'.

The NLE will sometimes choose one of these interpretations and continue processing
using just that interpretation. If the NLE has disregarded one of the interpretations
there are often a way to rephrase the question to that you get the other interpretation.

9.11.12 Examples of questions using temporals

Examples

Who completed a module on or before July 17
What accounts became overdue after March 2
Which employees took vacation in January

Customization notes: A temporal relationship has to be defined between the date
entities and the verbs. See Case 12 below.

Limitations: The date columns in the database have been declared as e.g. DB2
DATES.

9.11.13 Examples of questions using locatives

Examples

Which employees work at the Dialogue Technologies?

Copyright, all rights reserved

118

How many orphan accounts are there in the western region
Which flights arrive via 'New York'

Customization notes: The appropriate locative relationships have to be set up. If
'Orphan accounts' is a subtype of 'accounts' then 'orphan accounts' will inherit the
relationships of the 'accounts' entity. So, if 'accounts' has a locative relationship with
'western region' then no such relationship need to be defined for 'Orphan accounts'.
'Western region' could be a subtype of 'location' where the states belonging to the
western region are selected in the WHERE-clause of the 'western region' entity.

Limitations: You cannot use a sequence of locatives in your query, especially
queries referring to data values having more than one lexical component. Thus, you
cannot ask, 'which customers bought motors from sales-representatives in chicago,
los angeles, and 'new york'.

9.11.14 Examples of questions referring to previous questions

Examples

How many are there
Where do they work and how much do they earn
Are they expensive

Customization notes: Simple refer back questions will work as long as the
appropriate relationships have been specified. In addition, you have to set the 'Refer
to questions' option on the Action bar of the Query Interface. You can refer back to
up to five questions.

Limitations: You can only refer back to a previous question once without having to
ask another question.

9.11.15 Examples of questions using elliptical phrases

Examples

customers
products with price
which manager earns the most

Customization notes: The first two examples are short for 'list customers' and 'list
products with price'. The NLE cannot parse the third example without a customized
work-around. You can create an entity like 'max earning manager with the correct
SQL, including a sub-select on the salary column, and link it to a verb, 'earn the
most'.

Limitations: You cannot use coordinated noun phrases in these kinds of queries.
Thus, you cannot ask, 'products and price'. In the second example, 'with price' works
because products have prices, and the possessive relationship has been defined.

Copyright, all rights reserved

119

9.12 Testing the model

• Test your model incrementally as you develop it.

• Start by asking questions that use only nouns.

• Ask questions that include verbs.

• Ask questions that include adjectives, subclasses, and instances.

• Ask questions that test units of measure, prepositions, and other special
relationships.

What to look for: For each question that you test, you should check that:

• The question is interpreted.

• At least one interpretation matches the sense of the question.

• The SQL generated matches the interpretation.

• The SQL is correctly executed.

Possible problems: Some problems you may encounter while developing your
model are:

• No interpretations of your question.

• Words highlighted in your question.

• No interpretation matches your question.

• You get a lot of interpretations.

• The SQL does not match your question.

• The SQL is correct but the answer is not.

• You get an unexpected null value.

• A question that needs a temporary table is not executed.

No interpretations: If your question is not interpreted:

• Follow any guidance in the error messages.

• Check highlighted words.

• Try asking the question another way.

• Check that you have defined the terms and relationships used in the question.

• Break the question into simpler parts to identify the problem.

• Rebuild the question by degrees.

Highlighted words: If some words in your question are highlighted:

• The highlighting means that Ergo did not recognize the word.

• If the word is a data value, the highlighting does not indicate an error.

• If the word highlighted is a term used in the question:
- The term has not been defined in the model, or
- The term has been spelled incorrectly.

Wrong interpretations: If none of the interpretations matches the question you
asked, check:

• the terms

• the classification, or

• the relationships,
for all the entities used in the question.

Many interpretations: If your question produces many interpretations:

Copyright, all rights reserved

120

• There may be unnecessary relationships between entities.

• One of the entities may be classified incorrectly.

• The same term may be used by more than one entity. This is permitted and may
not necessarily be an error.

Wrong SQL: If the SQL statement does not match the question you asked, check:

• the terms

• the classification, and

• the relationships
for all the entities used in the question.

Wrong answers: If the SQL appears to be correct but the answer is wrong, check
that data values in the SQL exactly match those in the database.

Null values: If your question returns an unexpected null value:

• The SQL is executing an expression that includes a null value.

• You can avoid this by not allowing null values in your database.

• If this is not possible, add a clause WHERE ... IS NOT NULL to the entity SQL.

Temporary tables: If questions requiring temporary tables are not executed:

• These are generally questions referring to a range (from A to B) or a ranking (the
three biggest..).

• Either you lack authority to create tables, or you do not have sufficient space for
them.

• Contact your Ergo administrator to correct the problem.

Common mistakes

• Table mode.
Check that you have:
1. Defined keys and other column information.
2. Defined inclusion dependencies for subsets with a special meaning.
3. Added join-paths between columns used to join tables.

Common mistakes

• Names and identifiers.
- The identifier should normally be associated with a key column.
- The only classification should be identifier.
- The only relationship should be the ‘what uniquely identifies... relationship.’
- Do not give an identifier any term except one that expresses identity.
- Treat names similarly, except for the association with a key column.

Common mistakes

• Classifying subclasses.
First classify the primary concept appropriately.
Then classify the subclass under its super-class.
Be sure to do this for subsets and supersets defined in Table mode.

-

Other mistakes:

Copyright, all rights reserved

121

• Identifying subtypes

• Classifying quantity vs. quantified property vs. number

• Column to exclude

• No referential Integrity

• Customizing Verbs in Passive Voice

• Date Functions

• Multi-Column Concepts - NON-3NF TABLES

• Understanding Unit of Measure

Error logs

• All failed questions are kept in an error log.

• Consult your Ergo administrator to find out what the log-file is called

• This log can give useful information about how your application is working.

Promoting a model: When you consider that your model is ready for use, contact
your Ergo administrator, who can then make it available to users on the host.

9.13 Application development speed

1. Make sure each entity has easily distinguishable names.
2. Make sure each entity has easily distinguishable primary terms.
3. Avoid unnecessary tasks:

a. Multiple classifications
b. Redundant terms and syntax
c. Incorrect SQL
d. Redundant relationships
e. Unnecessary subtypes or other entities

The following is a summary of Rules of Thumb for Customization

General rules of thumb for customization
1. Entity names may have no more than 25 characters.
2. Entities that queries are linked to should be properly classified.
3. Language terms may have no more than 80 characters.
4. Language terms as used in queries must have the correct part of speech

specified.
5. All language terms in the queries must be customized (as part of the application

dictionary) or be found in the base dictionary.
6. Correct language (grammar) relations must be specified.
7. For verbs, the correct verb complement must be specified.
8. Prepositions not associated with entity classification must be specified by

selecting prepositional object phrases from the Syntax option in the Define entity
dialog box. For instance, if one entity is classified as a place, the 'in' preposition
can be used in queries if the entities in the query have a locative (place)
relationship specified between them. If the 'in' preposition is explicitly specified
with the Syntax option, then multiple paraphrases can be generated for queries
with these entities. To avoid redundant paraphrases, select 'in' from the Syntax
option when the object of the preposition is not classified as a place, for
example.

Copyright, all rights reserved

122

9. All concepts used in queries must have a DB-image or be identified by an entity
that has a DB-image.

10. Components of a structured entity should have a DB-image or be identified by
an entity that has a DB-image.

11. Components of a structured entity may not contain entities with column
functions (SUM, MIN, etc.) in the SELECT part of the DB-image.

12. If a structured entity consists of components intended to access information
from different tables, the tables must be linked with a join-path, even if they are
already linked with an inclusion dependency.

13. If an entity is measurable, only one 'measured-by' relationship may be defined
for it.

14. In order to create charts, at least one term in the query must refer to a column in
the database that contains numerical data values. The corresponding entity
must be classified as a number, quantity, or value.

15. The information in a query can be ordered by an entity if there is a possess
relationship between that entity and an entity in the query. The order-by-entity
can refer to a single column or be a composite entity that refers to several
columns. If the order-by-entity is a composite entity, then the information in
the query can be ordered by several columns.

Copyright, all rights reserved

123

10. FINAL TEST AND EVALUATION
The model should be tested as the work progresses. Normally, changes to the model
will be incremental so that changes made will not affect work that has been done
previously. It can therefore be sufficient to test only those areas of the models that
have been added. At this stage, however, all the questions will have to be tested and
the reports that are generated should be evaluated.

It is also useful to evaluate the training at this point, and to give feedback to the
trainer. Also, the authors would gladly receive any comments that you might have
about this guide or about the product.

10.1 Testing

Before the application is made available to target users, it would be prudent to test it
with a set of queries. This can be done incrementally. There are three useful stages
in the customization process for testing:
1. As soon as language terms and synonyms have been added to the basic data

model generated by the Edit Schema display, users may pose queries such as:
list the agents
list the agents and the general offices is smith an agent

These questions assume the tables in the Rework Tables display have been
correctly processed.

2. As soon as verb entities have been added to the conceptual model, users may

pose queries like:
who works in new york
does smith work in new york
does smith work in new york or los angeles

3. As soon as subtype and adjective entities have been added to the conceptual
model, users may pose questions like:
who works in the new york office
how many agents work in the new york office
who is the best agent in the new york office

10.1.1 Release to target users

While some of the end users have participated in the pre-customization process,
other may not have. In addition, release to target users can be incremental or at a
point where the customizer decides his customization is satisfactory for most uses.
Very likely, release will occur on a somewhat incremental basis, the exact degree
depending on the project, number of target users, and so forth.

Nonetheless, these things must be kept in mind, as the application is released to the
target users:

• The project plan should stipulate whether the end users should immediately be
informed of the scope of the application dictionary. The only case they would not

Copyright, all rights reserved

124

be informed is when the project specifically aspires to test the performance of the
meta-knowledge function in the product.

• The target users should be encouraged send feedback to the customizer when
they discover that words they use are not in the application dictionary.

• The target users should be encouraged to examine the validity of the answers
they get to their queries, to make sure that the customization is correct, or identify
potential bugs in the NLE.

• The target users should be encouraged to make estimates and note their
reactions to performance times, so that their comments can be included in the
project evaluation.

10.2 Application evaluation

After customization has achieved a satisfactory level and after the period of time for
use by the target users has ended, the project should be evaluated. Evaluation is a
well-defined process. Generally, we would like to know:

1. for the customization process:

- How many entities did the conceptual model contain?
- How many entities were verbs?
- How many entities were subtypes?
- How long did the customization process take per customization phase?
- How long did the customization process take per entity?
- How many requests for word additions occurred?
- Were there any errors in writing the SQL image for subtype entities?
- Are there any non-specified functions desirable?

Many other questions can be added to this list.

2. for the target users:
- How many queries were asked?
- How many queries were successfully processed and answered?
- How-many requests for synonyms were made?
- What syntactical characteristics did the most successful queries have?
- What syntactic structures did the failed queries have?
- Were the response times satisfactory?
- Were the answers to the queries the expected answers?

This evaluation process will assist in developing future applications.

10.3 Customization performance implications

The linguistic performance of Ergo is dependent on the customization of the
database. A conceptual model is created to link language terms to the tables in the
database.

Concerning performance as customizers, one has to look closely at the exact number
of expected paraphrases, eliminate unnecessary language and conceptual
relationships, eliminate the unnecessary classifications, and synonyms. Obviously

Copyright, all rights reserved

125

getting rid of redundancy in relationships or classifications, takes away additional
semantic trees and or CLF's since each interpretation derives one or more semantic
tree, which is traversed by the engine. Each semantic tree may have, depending on
model facts, one or more equivalent CLF’s which then get translated to equivalent
SQL statements. Classification of a term such as the verb work provides its semantic
meaning. As the generation grammar converts the CLF's closer to the Paraphrase or
DBLF form, we notice that lesser conceptual objects are maintained and the query
now looks more like its English form.

There are times when it may be better at to create two verbs (work) let us say if there
are 10 dependent subjects that share the same verb syntax. Therefore, for
performance reasons, it may be better to have 5 of those subjects linked to one verb
and the other 5 linked to a newly created verb. The same performance aspects are
applicable in the creation of structured entities. The more entities a structured entity
is composed of affect engine performance. If a sentence's syntax becomes too
complex, this may result in either lexical or structural ambiguity, or both. Therefore,
paraphrasing is essential to disambiguate sentence structures that are rendered
ambiguous, such as these queries:

Who works for Smith at LDG?
Can flying planes be dangerous?

Queries where a data value refers to any number of parts of a structured entity will
have a process time proportional to the number of parts in the structured entity in
question.

Ergo requires on an average, a couple of seconds to interpret the question. This time
is dependent on the number of words in the vocabulary, and the length and
complexity of the question.

Copyright, all rights reserved

126

PART 2. Case Studies

Copyright, all rights reserved

127

11. CASE 1: JOINS AND INCLUSION DEPENDENCIES
Joins and inclusion dependencies are important in establishing inter- and intra-table
relationships. In Ergo terms this means that entities representing concepts of their
respective table can establish relationships or can be linked to other entities
representing concepts of other tables.
The following are examples of how we use joins and inclusion dependencies
between tables.

A. Intra-table inclusion dependency:
Inclusion dependencies occur when a column is a subset of another column in the
same table. This can happen between two columns within the same table.

We can say that the 'superior department' column is an inclusion dependency of the
'department' column because 'superior department' refers to a subset of the data
values present in the 'department' column. The effect of this in entity mode is that
'superior department' entity has to be classified as a subtype of the main concept
SDEP (department_table). It is this subtype relationship and not the inclusion
dependency that enables 'superior department' to inherit the relationships of SDEP
(department_table). The inclusion dependency is needed however to optimize the
SQL generated. Now we can ask the following question:

Who is the manager of the superior department?

B. Inclusions between tables
Inclusion dependencies are more obvious and clearer when it exists between tables.
It is used to represent columns of data values which are subsets of another column
of data values. In the perspective of Ergo this means that these two columns
represent different concepts.

Figure 42 Intra-table inclusion dependency

Inclusions between tables: An inclusion dependency is defined between manager
and employee_id, and a subtype definition between manager and employee entity.
The subtype is responsible for generating this SQL statement that shows a join
between manager and employee_id, and not the inclusion.

SELECT DISCTINCT X1.SALARY, X1.ID, NAME
FROM EPE.STAFF X1, EPE.ORG X2
WHERE X2. MANAGER = X1.ID

Therefore, in this example, manager will inherit all attributes of the department table.
So if the employee (EMP table) has commission and salary, then manager will inherit
or possess automatically commission and salary, and thus will enable a question
such as

What are the manager's salaries?
What are the manager's commissions?

Copyright, all rights reserved

128

Columns linked by inclusion dependencies are normally defined as subtypes. It is
important to emphasize that it is the subtype relationship (ENTITY MODE) that
enables subtype entities to inherit the properties of their super-types. The inclusion
dependency itself, is not required, but the SQL code will be optimized if it is included.

Therefore as long as an entity is a subtype of another entity, it can inherit the
relationships of that entity, no matter what joins or inclusion dependencies have been
defined.

C. Single-column joins
Join-paths establish a connection between columns of different tables with the same
concept. This enables the creation of OTHER relationships between ANY entities in
the tables that are joined. In other words you can address individual entities from
both tables in a single query. For example you can ask a query

'List location of departments for staff.'

A join-path generates in the WHERE clause of an SQL statement a "Join predicate" i.e. where
Col X = Col Y

Figure 43 Single-column joins

If join-paths are defined, the tables will be joined in the WHERE-clause on the
columns that are in the join-paths.

For the question:

List location of department for staff

If there is a join-path between STAFF.DEPT and ORG.DEPTNUM then the WHERE-
clause will contain:

WHERE X2.DEPT= X1.DEPTNUM

If there is a join-path between STAFFAD and ORG_MANAGER then the WHERE-
clause will be:

WHERE X2.ID =X1.MANAGER

If both joins are defined, then the WHERE-clause will contain both:

WHERE X2.DEPT = X1.DEPTNUM AND X2.ID =X1.MANAGER

D. Multiple-column primary key joins
Join-paths are necessary for creating a structured entity or when we wish to join a set
of matching multiple column primary keys in one table to another set of multiple
primary keys in another table.

If we define more than one direct join-path between two tables, Ergo assumes that at
least one of the tables has a multi-column primary key. For example if a table has a

Copyright, all rights reserved

129

two-column key that can be found as a foreign key in another table with a three
column primary key, you may join both columns to the corresponding columns of the
second table.

A multiple-column primary key that has more than one join-path will generate several
JOIN PREDICATES in the WHERE CLAUSE of an SQL statement Where COL W =
COL X and COL Y = COL X

< The figure will be added in a later release >

Figure 44 Multiple-column primary key join

E. Combined inclusion dependency and joins
It is important to understand that what governs the need to establish both a join-path
and an inclusion dependency on 2 tables depend very much on the context of the
application. There are instances which show that tables may have an inclusion
dependency and a join on the same column of two tables or may have an inclusion
dependency and a join but on different columns of two tables.

In one example, a join is needed in order to enable us to create a structured entity.
We join the tables using a pair of columns. However, if these pair of columns denote
different concepts, an inclusion dependency is necessary. In this example, a join is
needed for the structured entity, 'order info', but because the columns prodnum (in
PRODUCTS) identified a DIFFERENT concept ('product') than prodno (in SALES),
which is ('an ordered product') we need both a join-path and an inclusion
dependency. The inclusion here is used in order to optimize the SQL and will not by
itself enable us to create the structured entity.

< The figure will be added in a later release >

Figure 45 Combined inclusion dependency and joins

F. Referential integrities, primary and foreign keys.
The CT will automatically pick up information about keys and referential integrities
from the system tables in e.g. SQL/DS and DB2. When the information from the
database is fetched through the CT Table Download utility CTTABS, the two files
SYSTAB.DAT and SYSCOL.DAT are created. The new thing is a third file -
SYSREFDAT - which contains all information about the existing referential integrities
in the database. The format of this file is:

CREATOR_1 | TABLE_1 | COLUMN_1 | CREATOR_2 | TABLE-2 | COLUMN_2

 | | | | |
 | | | | |
 | | | | |
 | | | | |
 | | | | |

Copyright, all rights reserved

130

Columns 1-3 of this file refer to those columns in the database, which are foreign
keys. Columns 4-6 refer to primary key columns. Thus one row of this file represents
a referential integrity or, in case of a multiple column key, it represents part of a
referential integrity.

The CT will draw inclusion dependencies between all pairs of
COLUMN_1 and COLUMN_2. The columns in COLUMN_1 will be indicated as
excluded and columns in COLUMN_2 will be marked as primary keys.

In case several tables are linked in a chain, it is possible that one column will be both
excluded and primary key at the same time. In the case where a multiple column key
is part of a referential integrity, the CT will draw one inclusion dependency between
every pair of foreign/primary key columns, i.e. if the key is built up by three columns,
three dependencies will be drawn.

Restrictions
When a column is not part of a referential integrity in the database, the CT will not
show the column as a primary key even if the user has defined it as a primary key in
the database.

See Rework Tables Section on page Fel! Bokmärket är inte definierat., for
discussions on joins.

Copyright, all rights reserved

131

12. CASE 2: TO BE ADDED

Copyright, all rights reserved

132

13. CASE 3: ENTITIES WITH NUMERICAL DATA - UNIT OF
MEASURE

A. Unit of measure
When you classify an entity as a subclass of quantified_property, you can specify its
unit of measure. The Customization Tool contains units of measure for age, area,
currency, duration, length, volume, and weight. When you specify a unit of measure,
Ergo users can use the unit of measure in their questions, for example: You can:

• Add units to an existing quantified property.

• Create new quantified properties and units.

Defining Units of Measure
You can define units of measure for numerical entities. Do this by classifying the
entity under a suitable heading of quantified_property.

• Select the classification and press Apply. Then press Unit of measure.

• Select the unit required and any scale factor.

Example:
If you want to use ounces in questions when the database values are in pounds, set
the scale factor to 16.

Defining new units of measure
You can create your own units if the existing ones are not applicable. For example, to
define nautical mile as a unit of distance:

• Create an entity for nautical mile.

• Classify it as an instance of unit of measure length.

• Give the entity the term nautical mile.

The new unit will be available for any entity classified under length.

Creating a new quantified property
To create the quantified property temperature, with unit of measure Kelvin:

• Create an entity for temperature. Make it a subclass of quantified property.

• Create an entity for unit of measure temp. Make it a subclass of unit of measure.

• Between temperature and unit of measure temp, create the relationship:

What is the unit type for temperature? Unit of Measure temp

Creating a new unit of measure
Create an entity for the unit you want to use. Make it an instance of
unit_of_measure_temp, and give it the term you want (Kelvin). You can now use
Kelvin as the unit for any entity classified under temperature.

Copyright, all rights reserved

133

Figure 46 Units of measure

B. Applying units of measure to numeric ranges
The following are some examples on how to use units of measure. It is important to
note that data should be defined as numeric (decimal or integer) and not character to
be able to perform this function.

Which clients borrowed between 1000 and 100000 dollars?

We can define dollars as a unit of measure for the 'borrowed amount entity'. We
classify borrowed amount as a 'value' under quantified property and then select the
unit of measure 'currency' instance of 'dollar' for this. Dollar is already predefined.

Which employees have between 5 and 10 years experience

We can define 'years' as a unit of measure for the experience entity. We can classify
years as a duration under quantified property and then select the unit of measure
duration instance of 'years'. Years have already been predefined.

Which customers ordered between 15 and 100 items?

This is a different case, since we need to create a new quantified property and a new
unit of measure. Using the previous steps as guidelines, we first create a quantified
property 'order' and classify it as a quantified property. Create a unit
of_measure_order and make it a subclass of unit of measure Create a relationship
between order and Unit_of_measure_order:

What is the unit type for orders? Unit of measure orders

Create a new entity (item) and make it an instance of Unit_of_measure order. We
can now classify 'ordered quantity' as orders and then select the unit of measure
instance of 'items' as appropriate.

Instance

kelvin

Unit_of_measure
_temp

temperature

meltpoint_
col

material_
table

Unit type

Unit of measure

Subclass

measured by

Copyright, all rights reserved

134

14. CASE 4: RANGES (DATE FUNCTIONS)
Entities that express date or time are classified as a subclass of DATE or TIME. This
enables Ergo to perform date and time arithmetic to express a duration. A duration is
a number that represents an interval of time which can either be a date duration or a
time duration. Ergo automatically generates SQL to perform date and time arithmetic
to express duration. Examples of SQL statements that may express the following
contexts in terms of date and time durations are as follows:

Who completed modules yesterday?

SQL:
SELECT X1 module_name from table.module x1
WHERE DATE(ADATE)= DATE(CURRENT DATE -1)

An entity ADATE exists and is classified as date

Who will complete modules tomorrow?

SQL:
SELECT X1 module_name from table.module x1
WHERE DATE(ADATE)= DATE(CURRENT DATE + 1)

What policies four (4) years old?

SQL:
SELECT X1 policy name from policy
WHERE years(currentdate - issueyr) <4

An entity 'issueyr' exists and is classified as date. Ergo allows you to define SQL to
satisfy date durations to create new entity types.

Who are the experienced agents?

SQL:
SELECT X1 aname from table.agent x1
WHERE year(current date) - year(x1.hiredate) > 6

An entity 'experience' contains this SQL. Experience is defined as agents who have
been in the company for 6 years or more. Experience is classified as duration.

Who completed modules in June?

SQL:
SELECT X1 module_name from table.module x1
WHERE date (policy) >= '06-01-98' and date(issueyr) <= '06-08-98'
We classify the 'june' entity as a duration and set up the SQL in it.

Copyright, all rights reserved

135

15. CASE 5: UNION OF 2 IDENTICAL NON-3NF TABLES
Some tables may contain historical information that acts as an archive of a current
working table. This means that these tables are structurally similar, but their contents
have different meanings. A customer CURRENT_ORDER table versus a customer
OLD_ORDER table may illustrate this point.

. CURRENT_ORDER OLD_ORDER .

CUSNO] MACHINE] ORDERNO CUSNO] MACHINE] ORDERNO
123 3090 789 123 3090 233
234 AS400 434 455 4331 657
456 9370 233 444 4241 324

Table 3 Non-identical tables

It is possible that there exists a subset of employees in either table that belong to the
other table. We are assuming here too that order numbers may be repeating after a
given limit.

The main objective here would be to address a query, which asks information about
all orders made by all customers. This would need the information from both tables.
An intuitive approach to this would be to address both tables as a single concept in
Ergo. It may have been conceived that the use of a VIEW to get the UNION of both
tables would have been an ideal solution in order to create a single physical table
that corresponds to a single language concept of "all customer orders". Other means
have to be investigated.

Note that an attempt to join the two tables on the primary key CUST_NO cannot
merge the information on the two tables because we are not only interested in finding
the intersecting information (customers with both old and new orders), but the entire
set of customers.

Customization steps
We will try to bridge the information on both the CURRENT_ORDERS table and the
OLD_ORDERS table by creating a new table with a single column that contains the
information of all customers that belong to either table.

CREATE TABLE ALL_CUS_ORDERS
(SUP CUSTNO CHAR(6))

Populate the table with customer numbers from both tables in one of several ways
i.e. UPDATE, INSERT statements.

Note: Each application that updates old and current orders should update the new
ALL CUS_ORDER table

In TABLE Mode, join-paths must be established between the tables OLD_ORDERS
and CURRENT_ORDERS and ALL_CUS_ORDERS. Join the primary key of
CUSTNO of each table to the single column SUP_CUSTNO.

Copyright, all rights reserved

136

In Entity Mode, we now have a new concept called All_Customer_Order
corresponding to the table ALL_CUS_ORDER.

The single column entity called SUP_CUSTNO will be customized as an identifier.

CREATE an entity called DISTINCT_CUSTNO and make it a subtype of the entity
SUP_CUSTNO. This entity will be classified as an identifier The SQL image for this
entity is as follows:

SELECT DISTINCT SUP_CUSTNO
FROM ALL_CUSTORDERS

Make the identifier CUR_CUST_NO of the entity CURRENT_ORDERS a subtype of
entity DISTINCT CUSTNO.

Make the identifier OLD_CUS_NO of the entity OLD_ORDERS a subtype of the
entity DISTINCT_CUSTNO.

Now that we have these in place, if we ask a question

List all customers with 3090 orders.

the NLE will look for the entity with the term 'customers' which is found in the entity
SUP_CUST_ORDERS which is defined in the entity SUP_CUSTNO.

Copyright, all rights reserved

137

16. CASE 6: CONCEPTUAL ENTITIES AND MULTIPLE-
COLUMN CONCEPTS:

Example 1: Contract application
Tables may contain imbedded concepts, which make them NON-3NF. These
imbedded concepts are attributes of a table, foreign keys or primary keys that do not
represent the main concept of a table. The following situation illustrates this point
Hours Worked Table:

ID CON_ID CON_NAme CONTRACT VALUE HRSWORK
123 10 SitePrep 20000 155
345 20 Concreting 15000 168
456 30 Bushwork 25000 167
557 10 SitePrep 20989 200

Table 4 Non-3NF table

The Primary Key of this table is ID. As the columns_Con name and Con_val are
functionally dependent on CON_ID, this table is in 2nd Normal form (NON-3NF)

Assume we have an employee table to be joined to the Hours_Worked table and the
employee table has an Employee name and ID columns. We can join the hours
worked table to the employee table (Employee_id) and exclude ID (Table mode).

Solution 1

• Create a conceptual entity CONTRACT

• Classify CON_ID as an identifier and make it identify the contract entity

• Classify CON_NAME as a name and make it name the CONTRACT entity

• Establish the appropriate relationships between CONTRACT_VALUE and
CON_VAL and the Contract Entity. For instance we can establish a measured_by
relationship or a possess relationship between the two entities.

• Create a new verb entity Work.

• We link 'Employee' (table entity) and 'Number of hours worked' to the 'worked'
choosing the syntax 'who work for something' and 'who works for number of
hours'

• Link CONTRACT entity to verb Work with the proper syntax, for example the
syntax who works on something to denote employee works on contracts.

Solution 2
The use of views to create the appearance of a normalized database can also be
used.

This is done through the following view:

Copyright, all rights reserved

138

CREATE VIEW V1 (CID, CNAME, CVAL)
AS SELCT DISTINCT CONID, CONANIE,CONVAL
FROM HOURSWORKED

We can now ask the questions like:

Who worked on contract 123?
List the total number of hours worked by smith.
Who has the highest number of contracts worked on?
List contracts by hours worked.

Example 2. Mailing application
This is an exercise to demonstrate how to create new concepts from existing
complex concepts such as structured entities:

Table: LOCATION
Col1: Location_Id
Col2: City_ID
Col3: City_Name
Col4: State_ID
Col5: State_Name
Col6: Country_ID
Col7: Country_Name

• Create Conceptual Entity with ID and Name: CITY
Link CITY_ID to CITY with the relationship
What uniquely identifies City? CITY_ID

Link CITY_NAME to CITY with the relationship
What is the name of CITY? CITY_NAME

• Create Conceptual Entity with ID and Name: STATE

Link STATE_ID to STATE with the relationship
What uniquely identifies STATE? STATE-ID

Link STATE_NAME to STATE with the relationship
What is the name of STATE? STATE_NAME

• Create Conceptual Entity with ID and Name: COUNTRY

Link COUNTRY_ID to COUNTRY with the relationship:
What uniquely identifies Country? Country_ID

Link Country_name to Country with the relationship
What is the name of Country? Country_Name

• Define Possessive relationships from the newly formed entities to either the table
entity (location) if it is necessary and only as dictated by the context of the query.

Copyright, all rights reserved

139

• Define other relationships between other entities i.e. customer entity, and the
formed structured entities:

Create Structured Entity: Location Name

Consists of: CITY_NAME, STATE_NAME, COUNTRY_NAME

Link CITY_ID, STATE, and COUNTRY entities to LOCATIONS and establish
possessive relationships.

See Define Conceptual Table Entities under Edit Model- Phase 1 page 69

Copyright, all rights reserved

140

17. CASE 7: STRUCTURED ENTITIES

Numerical data and report information:
A data processing department may wish to obtain reports that show the total
resource usage i.e. the total CPU time, total Printer time and total DASD utilization
for a given time period. This may be used for charge back reasons.

We create a structured ENTITY: RESOURCE USAGE

Entity: RESOURCE_USAGE
Term: Total Resource Usage
Class: Number
Consists of CPU_TIME, PRINT_TIME, DASD_TIME

Entity: CPU TIME
Term: total Cpu time
Class: Number
SQL: select CPU_TIME from CPU_TABLE

Entity: PRINT_TIME term:
Total Print Time
Class: Number
SQL: Select PRINTER_TIME from PRINT_TABLE

Entity: DASD_TIME
Term: total dasd time
Class: Number
SQL: Select DASD_TIME from DASD_TABLE

A variation of this would occur if the table information for CPU, PRINTERS and
DASD contain horizontal information (i.e. a Column for every printer in-house) rather
than putting all printers under one column. We then need to modify our SQL
statements to reflect a horizontal summation of all PRINTER, CPU and DASD
resources:

SQL: CPU A + CPU B + CPU C
SQL: PRINTER A + PRINTER B + PRINTER C
SQL: DASD A + DASD B +DASD C

 See Structured Entities with Numerical Entity Components.

Ordered-by reports:
Ergo handles order-by by including the columns ordered-by in the columns selected,
i.e. 'List cpu time by system' would select both CPU_SECS and SYSTEM_ID. In
order to do this Ergo paraphrases the questions in the following way: ‘List systems
and their cpu times.’ Order by systems id. Therefore it is unnecessary to specify
'systems' in the question, i.e. 'List systems and their cpu times by system' is
redundant since it mentions systems twice, and Ergo will create two paraphrases for
that question.

Copyright, all rights reserved

141

The more terms in the order-by the longer it is going to take to for the engine to
process the question:

List CPU time by bid, by sid, by job system.

There is therefore an upper limit to the number of order-by terms that can be inserted
into the same sentence. This upper limit depends on the complexity of the sentence.
We can ask questions with six order-by terms. Fortunately, structured entities can be
used to group concepts and thereby reduce the number of terms in the order-by
question.

List CPU time by account order.

Here account order is a structured entity, which consists of BID, SID, JOB SYSTEM.
Realize that this might not be a realistic solution since if there are five possible order-
by terms (BID, AID, SID, JOB NAME, and SYSTEM
ID) and they could be used in any order, 120 different possible combinations of
structured entities can be created. However, if any of these terms could be grouped
together in composite entities, that would reduce the number of order-by terms in the
questions and produce the SQL that are needed.

See Create Structured Entities for Identifiers and Names.

Copyright, all rights reserved

142

18. CASE 8: ENTITIES WITH NUMERIC DATA - MEASURED
BY
Measured-by relationships enable one to rank the instances of the entities. We would
like to find the agent with the highest commission amount. It is important to bear in
mind that we should not define more than one measured by relationship for a given
entity. If we have more than one measured-by the engine arbitrarily picks one of
them.

Entity: Account Asset
Term: account asset
Class: Thing
SQL: none

Entity: Account Commission
Term: account commission
Class: Thing
SQL: none

Entity: Asset Amount
Term: asset amount, asset
Class: number, quantity
SQL: Select x1.amount from account asset x1

Entity: Commission_Amount
Term: Commission
Class: number, quantity
SQL: Select x1.amount from commission x1

< The figure will be added in a later release >

Figure 47 Measured by

Classify the following entities 'number' and 'quantity' Commission Amount Asset
Amount.

The reason for classifying these entities as both 'number' and 'quantity' is that it
enables two types of questions to be asked. The 'number' classification enables
questions of this type to be asked:

List the commission amounts > 5000

The 'quantity' classification enables questions of this type to be asked

List the top ten commissions

Copyright, all rights reserved

143

For the latter question to be asked a measured-by relationship between Commission
Amount and Commission also has to be in place.

Establish a measured-by relationship between:
Commission Amount and Commission
Asset Amount and Account Asset

With this setup one can ask the following questions:

List the asset years of the accounts
List the top ten commissions
List the accounts with asset amounts > 5000
List the top ten account assets
List the commission amounts > 5000
List the accounts with the top ten account assets

See Entities Referring to numeric data.

Copyright, all rights reserved

144

19. CASE 9: NON-3NF TABLES - TABLES PROCESSED AS
VERBS

Any table entity can be processed as a verb if the semantic context warrants it and if
the join-paths are correctly set up. In this application, we would like to ask the
following questions:

Who studied chemistry and accounting?
Who studied chemistry and accounting?

This application contains several tables with multi-column primary keys. We
mentioned earlier that some tables with multi-column keys can be treated as verbs,
and the table (view), Education_History, is one such case.

< The figure will be added in a later release >

Figure 48 Tables processed as verbs

Customization
Table: V_Education_History should be processed as verb, say, 'study'.
Verb complement: Who studies what
Subject: 'employee' (entity: employee_tent from EMPLOYEE)
Object: 'major' (new dummy entity: major_dent)

Take away inclusion dependency between EMPLOYEE SNO and Education_Hist
SNO, although the join-paths remain.

Suggestions for column entities from V_Education_History:
Entity Name Classification Term Linked to
SSNO ** DELETE
MAJOR_CODE Identifier 'college major id' 'major'
MAJOR_NAME Name 'college major name' 'major'
DEGREE_CODE Identifier 'college degree id' 'college degree'
DEGREE_NAME Name 'college degree name' 'college degree'
FINAL_YEAR Date 'degree date' 'college degree'
 'major'

Two 'dummy entities' must be created:

Entity Name Classification Term Linked to
MAJOR_DENT Thing major Identified by MAJOR_CODE
 Named by MAJOR_NAME
DEGREE_DENT Thing college Identified by DEGREE_CODE-
 degree Named by DEGREE_NAME

Because of the join-path set up and because the table entity is processed as a verb,
the correct SSNOs will be found when asking questions for information across these
two tables. If we have had an inclusion dependency in this case, we would have
assumed that a link was created between two different concepts, e.g.,
employee/educated_employee. The join-path and the excluded column assume that

Copyright, all rights reserved

145

the concepts identified by the SSNO column are the same, which in this case it is. (It
may not be so in other cases. It depends on our DB conception of the world and what
we want to talk about, e.g., certified instructor. With 'certified instructor' we would
have to create a special 'certified instructor name' entity and link it to 'certified
instructor' if the concepts are truly different.)

Also because of the join-path and the direct employee/verb(study) link, the employee
names are automatically generated. Hence we can ask now:

what major did smith larry study

To ask 'what major did larry smith study' simply change the order of the components
in the employee name structured entity.

Another verb may be created: 'receive'

Relations:
'employees study majors'
'employees received degrees'

Syntax:
'majors in/on something'
'degrees in/on something'

You may now ask these questions:

Who studied chemistry and accounting
Who received a bachelor of science
Who received a bachelor of science in 1990
Who received a bachelor of science in chemistry in 1990
What degree did smith larry receive

These suggestions work in principle for the other History tables.

Copyright, all rights reserved

146

20. CASE 10: VERBS WITH EMBEDDED PREPOSITIONS

Reply to/by
As mentioned in the topic of verbs, there are instances where we would want to add
the preposition or the verb complement directly to the term of the verb. This is
necessary in a special case when the SYNTAX of the query demands that another
preposition follow the verb complement.

Entity: Communication
Term: Communications
Synonym: none

Verb: Reply_to
Term: reply to
Synonyms: respond to, answer to
SYNTAX: Who replies to what by something

Entity: Replying officer
Class: Person
Term: Officer
Synonym: replying officer

Figure 49 Verbs with embedded prepositions

Here we link the verb REPLY_TO to the entity Officer, and establish the relationship:

What does someone/something reply to by? Replying officer,

since Replying Officer is the object of the sentence.

We link REPLY_TO to the entity 'communication' and establish the relationship:

What is replied to? Communications.

This enables us to answer the question:

List communications replied to by officer John Smith.

See Prepositional Complements under Creating Verbs

Copyright, all rights reserved

147

21. CASE 11: ADVERBIALS

In customizing adverbs (of manner) we normally create a verb that contains the
adverb itself.

Supertype: Employee
Term: Employee

Subtype: usually_hard_working_employee
Subclass of: Employee
Term: usually hard working employee (single noun)
Synonym: NONE
SQL: Select x1.empno...FROM...WHERE x1.work rating='H'

Note: Here we've created a subtype that 'adjectivizes' the adverbial, making it modify
'employee'.

Verb: usually_work_hard
Term: usually work hard
Synonym: work hard usually
Relation to: usually_hard_working_employee
Who usually works hard? Usually hard working employee

< The figure will be added in a later release >

Figure 50 An adverbial

Here we have linked the verb phrase, 'usually works hard', to just that group of
employees who usually work hard. There may be other kinds of employees who work
in other ways. If we make them disjoint in the classification hierarchy, then other kind
of employees, for example, lazy employees, should not inherit the (verbal) property of
'usually working hard.' In any case, if you were to ask the question, 'list the lazy
employees who usually work hard', you'll get an empty report. But as long as this
entity is not disjoint with manager or salesrep, you should also be able to get those
managers who usually work hard. With this setup we can ask the questions:

Who usually works hard
Which manager usually works hard
Which salesrep usually works hard

Assume salesrep and managers are subtypes of employee.

Now if you ask, 'who usually works hard', you should also get only one paraphrase, at
the most 2. See Handling Adverbs.

Copyright, all rights reserved

148

22. CASE 12. COMPOUND VERBS WITH SINGLE
SUBJECTS

This application is an example of a compound verb, where the thematic noun
(customer) is a subject of one verb (to play golf) and the object of another verb (to be
born). Let us first set-up the corresponding tables:

Join-path set up:
Table Column Joined to Column (&exclude) Table
Customer Customer number -> Customer number Demographics
Customer Customer number -> Customer number Promotion
Customer Customer number -> Customer number Lifestyle

Assuming that 'Customer table' represents the concept 'customer', this will enable
'customer' to possess any attribute-column in any of the other tables. Thus the
'customer number' entities in the other tables should be excluded. We are assuming
that the 'customer number' columns contain a set of data values that is a subset of
the set of customer numbers in the 'customer number' column (superset) of the
Customer table. We are also assuming that we're talking about a 1-column primary
key.

The other table entities may now be processed as verbs: 'lives' (demographic), 'be
promoted' (promotion), 'like to' (lifestyle). Customer may possess all the columns in
these tables. All the columns may be linked to the verb (and any other verbs you may
create) if the semantics of your desired queries warrants it. These verbs seem to lean
toward the passive voice and are called deponent verbs.

We would like to be able to ask the question

How many customers like to play golf and were born after 1970

This involves joining the customer table, the lifestyle table, and the demographic
table. We find out that this needs further analysis in customization as compared to
questions such as 'How many golfers were born after 1970', by creating another
entity golfer and setting this up with the demographics table, thus the customization
is more straight forward.

The problem is that in the sentence 'How many customers like to golf and were born
after 1970' 'customers' is the subject of the 'like' verb but it is the object of the 'born'
verb. Therefore Ergo cannot interpret the question.

The solution is to create a verb 'BE BORN' and make 'Customer' the subject of that
verb (WHO BE BORN? CUSTOMER). The forms of the 'BE BORN' verb (passive
voice) would be: BE BORN, ARE BORN, WERE BORN, BEEN BORN, BEING
BORN. Note that we are using the plural form of the 'be' verb (are, were). If you want
to use the singular form as well, i.e. 'Is there a customer that is born after 1970' then
you need to create another verb 'BE BORN' that uses the singular forms of the 'be'
verb.

< The figure will be added in a later release >

Copyright, all rights reserved

149

Figure 51 Compound verbs

Customization

• Create verb 'like to' and conjugate 'like' in the dialog box, and select correct
syntax (synonym: 'like to play’)

• Create verb 'be born' and conjugate 'be' in the dialog box and select correct
syntax

• Link customer ('people') to 'like to' and 'be born' as subject Link 'like to' to 'sport'
(or the appropriate column)

• Link 'be born' to 'birth date' (which must be DATE data value)

Verb: Like_To
Term: Like to Play
Syntax: Who likes to play what?
Conjugate: like to, likes to, liked to liked to, liking to

Verb: Be Born
Term: Be born
Syntax: who is Born? Customer
Conjugation: be born, are born, were born, been born, being born

In addition to this, the time relations need to be set up between 'BE BORN' and the
entities Birth date and Birth year. See Section on Verbs.

Copyright, all rights reserved

150

23. CASE 13: NON-3NF DATABASES - AMBIGUOUS
DATA/MULTIPLE COLUMN PRIMARY KEY

A database is in non-3NF if data vales in individual columns do not have a single
semantic interpretation. An example of this occurs if a column contains data values
with multiple interpretations by design. The following table exemplifies this case.

Table: Account
BASE ID SSNO TAX NBR- SSNO FLAG
233 171643628 S
331 944677531 S
774 656424566 T
133 984566545 T

The table is not in third normal form because column SSNO_TAX_NBR contains a
set of numbers, which are either a Social Security number for individuals or a Tax
Number for firms. In order to distinguish between these two values, a separate
flagging column SSNO_FLAG contains the values 'T' to signify a tax number and 'S'
to signify a social security number. We are interested in addressing the following
types of questions:

List Tax Accounts
List Social Security Accounts

< The figure will be added in a later release >

Figure 52 Ambiguous data

Customization steps
We should also classify each entity of the table accordingly:

Entity Name Classification Term Linked To
ACCOUNT thing account -
SSN_NBR name SSN number ACCOUNT
SSNO_FLAG thing indicator ACCOUNT
BASE_ID identifier Base id ACCOUNT

Since we want to address either tax accounts or social security accounts and these
concepts are ambiguous and imbedded in a single column called SSNO_TAX_NBR,
then we have to create two subtypes of the ACCOUNT entity called
TAX_ACCOUNTS and SOC_SEC_ACCOUNTS (Tax accounts and Social Security
Accounts), and create corresponding identifiers to each or make each entity a self-
identifying concept.

Entity: Tax Account
Term: tax account
Class: Subtype of Account
SQL: Select (x1.SSN_TAX_NBR)
From Account x1
Where X1.SSN_TAX_FLAG = 'T'

Copyright, all rights reserved

151

Entity: Social_Sec_Account
Term: Social Security account
Class: Subtype of Account
SQL: Select (x1.SSN_TAX_NBR)
From Account x1
Where X1.SSN_TAX_FLAG = 'S'

Through these subtypes, we can now address the questions

List Tax Accounts
List Social Security Accounts

See Section on Subtypes.

Copyright, all rights reserved

152

24. CASE 14: SUBTYPES OF ENTITIES WITH MULTI-
COLUMN KEYS

When you have a subtype of an entity that has a multi-column identifier, the identifier
of the subtype must also consist of several columns. Since none of the individual
columns can identify the super-type, we have to create a structured entity, consisting
of the primary key columns and classify it as an identifier. Note that the table contains
a multiple column primary key composed of the BASE_ID and the FIRM_ID. For
every combination of a FIRM_ID and BASE_ID, this will yield a unique social security
number or a tax account number.

Table: Account
BASE_ID FIRM_ID SSNO_TAX_NBR SSNO_FLAG
233 A33 171643628 S
331 D12 944677531 S
774 W23 656424566 T
133 S22 984566545 T

In this case we create a "conceptual" entity ACCOUNT-ID and classified it as an
identifier, which identifies the ACCOUNT entity concept. Account id is a structured
entity, which consists of the Base_ID and Firm id entities. (Use the consists-of
function to build relationships). SSNO TAX NBR will Name the ACCOUNT entity.

Figure 53 Subtypes with multi-column keys

Since the entities TAX_ACCOUNT and SOC_SEC_ACCOUNTS are subtypes of an
entity ACCOUNT, which has an identifier ACCT_ID, these subtypes should also have
identifiers, which are also structured entities.

For example TAX_ACCOUNTS will have a TAX_ID and SOC_SEC_ACCOUNTS will
have a SOC_SEC_ID. TAX_ID will be a structured entity consisting of
TAX_BASE_ID and FIRM_ID. Only one of the columns that are part of the identifier
that identifies the subtype should be a new column where the appropriate subtype
subset is selected. All other columns that are part of the identifier that identifies the
subtype should be the original columns that are part of the identifier that identifies the
super-type. In this example, SOC_SEC_ID will be a structured entity composed of
SSNO_BASE_ID and FIRM_ID. Note that TAX_BASE_ID and SOC_BASE_ID are
newly created subtypes that select the appropriate subsets of accounts. Using SQL,
TAX_BASE_ID selects SSNO_TAX_NBR = 'T' and an SSNO_BASE_ID selects
SSNO_TAX_NBR = 'S'. On the other hand FIRM_ID is the same component of the
structured identifier ACCOUNT_ID of the super-type ACCOUNT entity.

Additional new entities

COLUMN CLASS LINKAGE
ACCOUNT_ID Identifier ACCOUNT
TAX_ID Identifier TAX ACCOUNT
 Consists of
 TAX_BASE_ID/FIRM_ID

Copyright, all rights reserved

153

FIRM_ID identifier ACCOUNT/TAX_ID
TAX_BASE_ID identifier TAX_ID
SSNO_BASE-ID identifier SSN ACCT_ID
SSN_ACCT_ID Identifier SSNO_ACCOUNT
 Consists of
 SSNO BASE ID/FIRM_ID

Note here that we could have implemented the above in parallel by using subtypes of
the FORM_ID and embedding the same SQL code in them. This is left as an
exercise.

Since the TAX_ACCOUNT and SOC_SEC_ACCOUNT entities are subtypes of the
ACCOUNT entity, they inherit all its properties, including the NAME which is the
SOC_SEC_NUMBER. Thus a query that asks 'What are the TAX_ACCOUNTS with
LOANS > 500', will then pick up the SOC_SEC_NUMBER, and using the TAX_ID, it
picks up the subset of rows where SSNO_TAX_NBR = 'T' and finally applies the SQL
predicate from the LOAN entity WHERE LOAN = >500.

See Subtypes.

Copyright, all rights reserved

154

25. CASE 15: ENTITIES WITH NUMERICAL DATA –
COUNTED-BY RELATIONS

When we need to count any number of occurrences of a certain entity we ask the
question prefaced with "How many". We could for instance ask:

"How many Policies are there" or
"How many employees are there in each department?"

There are special cases when we need to use the COUNTED-BY relationship and to
create entities in order to count occurrences of entities. Here are some examples:

A. Single-value field
We can use the Count by relationship to address a single quantifiable field in a
certain column.

In order to obtain the exact value of a single column within a row which expresses an
amount or quantity. For instance if you have a table COUNTRY and you wish to get
the population of a certain country.

Table: COUNTRY_TABLE
Col1: COUNTRY_NAME
Col2: COUNTRY_ID
…
Col(n): INHABITANTS

We create a new entity POPULATION and classify this as quantity. Set up a counted
by relationship between inhabitants and population column by choosing the
relationship 'How many inhabitants are there? Population'

Entity: Population
Term: Population
Classify: quantity

This will enable us to answer the question

How many inhabitants does Sweden have.

If we failed to add this counted by entity and relationship, and asked

How many inhabitants does Sweden have

We may get the answer: 1 because there is only one row in the 'inhabitants' column
that show the number of inhabitants of Sweden.

< The figure will be added in a later release >

Figure 54 Count-by relationship for single-column value

Copyright, all rights reserved

155

B. Counting instances
As mentioned earlier, the engine should normally be able to count the number of
occurrences (ex. tax accounts), however, if the entity has a structured identifier
(composite key), then the engine will not be able to count because the engine does
not know which entity to use in order to count. Therefore we create a COUNTED_BY
entity called TAX_ACCOUNT_COUNT, and classify it as a QUANTITY. In this case
we are interested in counting the number of TAX ACCOUNTS which exist in a given
client file.

Entity: Tax Account
Terms: tax account
Class: Subclass of Account
SQL: none

Entity: Tax Account Count
Terms: count
Class: quantity
SQL: Select count (distinct x1.SSN_TAX_NBR)
From Account X1
Where SSN_TAX_NBR = 'Y'

Entity: Tax Number
Terms: none
Class: identifier/ Consists of Tax_base_id
acct-firm-id
SQL: none

We then set up a counted-by relationship between TAX_ACCOUNT_COUNT and
TAX_ACCOUNT.

How many tax accounts are there? Tax account count.

Within TAX ACCOUNT COUNT, set up SQL to express

Select count (X1. SSN TAX-NBR)
From Account X1
Where SSN_TAX_NBR = 'Y'

You may now ask the following questions:

How many tax accounts are there

The drawback of this implementation is that we cannot ask for both "List tax
accounts" and "How many tax accounts are there?" In order to fix this we have a
workaround:
we create two TAX ACCOUNT entities and connect only one of these to
TAX_ACCOUNT_COUNT, which satisfies the question

How Many tax accounts are there?

Copyright, all rights reserved

156

Note that 'List tax accounts' will produce 2 paraphrases.

C. Summing instances
We can also use the counted-by relationship to sum the instances of rows on a
certain column. Note that this implementation is basically limited to satisfy the need
to sum up the values for a given column but it cannot be related to other entities. For
example: 'How many saws did customer A order?' cannot sum the rows for a certain
customer. However, 'how many saws were ordered' can be summed by this
technique. In this example, we are given a product table, and we would like to find
the number of saws that were ordered. We create a conceptual entity called sum
saws and classify it as a subclass of quantity, then setup the corresponding SQL to
sum total number of ordered saws.

Entity: Ordered_Saw
Terms: ordered saw, saw
Class: Subclass of order_info (the order entity)
SQL: SELECT X1.ORDERNO
FROM EPE.SALES X1
WHERE X1.PRODNO = '205'

Entity: Sum_Saws
Terms: sum orders for saw
Class: quantity
SQL: select sum(x1.quantity)
from epe.sales x1
where x1.prodno = 205

The Count saw entity is connected to the Ordered_saw entity with a counted-by
relationship.

The Ordered_saw entity is the object of the verbs order and sell, i.e.

What is ordered/sold? ordered saws

The Ordered_saw entity also possesses sales quantity. Ordered_saw is a subtype of
the Order_Info entity and not the Ordered_Products entity. These are the types of
questions that you can ask with this model:

Hour many saws are ordered
How many ordered saws are there How many saws are sold
List the number of ordered saws

See Entities referring to Numerical Data.

Copyright, all rights reserved

157

26. CASE 16: NON-3NF DATABASE: MIGRATED
HIERARCHICAL TABLES
There are instances when a DB2 database has been converted from a hierarchical
database. The hierarchical sequential key gets stored in a column of a table, which
then causes the interpretation of that column to be ambiguous. The column has
meaning based on the key's functional interpretation and an interpretation based on
its place in the hierarchy. For example, let us look at a database with two tables to
simplify this concept. The tables are a BILLING table and a STAFF table. Note that
these two tables do not have any referential integrity constraints established (i.e. no
join-path can be established).

Billing Table
BILL NO ITEM RESONSIBLE DRG ' LOC
001 PENS VPO1_2LBM_GWCR_222 LDG
002 NAILS VPO1____________212 LDG
003 CLIPS VP02_2LBM_______232 LDG

Staff Table
ENO ENAME ORG_VP ORG BM ORG_M LOC
123 HANS VP03 2LBM 1LGW LDG
456 CHARLIE VPO1 2LBB 1LGW LDG
789 SONIA VP02 2LPG 1LPG PHL

The Billing table contains the Hierarchical sequential key in column
Responsible_Org. The data VP01_2LBM_GWCR_222 means that a bill was
generated through an order made by a first line manager (GWCR) who passes
approval to a second line manager 2LBM then to a vice president (VPO1). The
employee serial number of the manager that placed the order is 2222. In a
hierarchical database this structure is more apparent since the root segment can
contain data for the Vice President, a parent segment can contain data for the 2nd
Line Manager, a child segment may contain data on the first line manager and so
on.... If a Vice President was responsible for making the order, then the data would
be represented as VPO1 -------------3333'. If a second line manager was responsible
for the order, then it would be represented as 'VP01 2LBM -----------3333'. What this
column then denotes is that it can contain information regarding WHO is responsible
for the billing and the billing level i.e. first, second or third line.

The objective here would be to address the different concepts embodied in the
hierarchical key in a language construct such that we can address both WHO were
responsible for the orders and WHAT their level of management is.

Customization steps:
For the customization of this case there are three cases. In all of the cases the data
values in the RESPONSIBLE_ORG column has to follow a pattern that allows us to
disambiguate the values with LIKE statements. We disambiguate the column
RESPONSIBLE_ORG by creating two new concepts called 'Responsible in Billing'
and

Copyright, all rights reserved

158

Case 1: There is no referential integrity between the Billing table and any other table,
i.e. the hierarchical sequential key in the billing table (RESPONSIBLE_ORG) does
not refer to any other column in any other table.

We disambiguate the data values by creating subtypes that look like this:

Entity: VP_LEVEL
SQL:
Select x1.responsible_org
FROM billing x1
WHERE x1.responsible org LIKE 'VP01____%'

With this subtype we can ask:

What bills were handled at the VP level

As you can see all we are able to get is the entire responsible org column. It is not
possible to break it up into pieces. Also if you want to ask:

Who is responsible for bill 001

You can only get the entire responsible_org column as an answer.

Case 2a: In this case there is a referential integrity between the hierarchical
sequential key of the billing table and the hierarchical sequential key of another table.
These two keys would be subsets of each other and the concepts of the keys would
be the same, i.e. they would both represent organizational levels.

A join-path would be set up between the two hierarchical sequential keys. One of the
keys would then be disambiguated as in Case 1. The other key would not have to be
disambiguated since there would be a join-path between them.

Case 2b: This is the case where there is hierarchical sequential key that is related to
several columns in another table. For instance, (as is shown in the current picture in
Case 4) there would be columns representing VP, BM and M in another table and
these columns would be related to the responsible org column in the billing table.

In this case, the information from the different tables cannot be related without adding
columns to the billing table. These new columns would be a breakup of the
responsible org column, and could be linked to the columns in the employee table.

Copyright, all rights reserved

159

PART 3. Appendices

Copyright, all rights reserved

160

Appendix A. The technology - natural language processing

Natural Language Processing is a branch of Artificial Intelligence (AI) technology with
an ambitious goal of enabling people and computers to communicate in "natural"
(human) language, such as English, rather than in a computer language, thus making
computers more accessible to non-technical users. The study of natural language as
used in computers is also known as computational linguistics.

Ergo uses computational linguistics and conceptual modeling, among other
technologies to interpret natural language questions. These technologies are not
based on keyword searches, but provide grammatical analyses and map input
elements in the database. The input element is analyzed semantically and
syntactically. It is then converted into internal logical representations that are mapped
onto SQL through a conceptual model of the database. Ergo can then identify the
correct tables, columns, and elements of the database that are required to answer
the questions.

Ergo features and functions can be described under two fields of study involved in
natural language processing:

Natural language understanding - the goal is to enable computers to language so
that the computer understands people more readily comprehend instructions in
ordinary human

Natural language generation - the goal is to have computers produce ordinary human
language, so that people can understand computers more easily.

Natural language understanding
In order to understand a natural language, Ergo uses the following methods and
techniques for analyzing text.

A sample relational database
The users work with the data, which is kept in tables of the relational database. Let
us take a simple case where the database contains some information about several
countries:

Ergo.CO

CNTRY CPTL CNT_ID

FRANCE PARIS 5

JAPAN TOKYO 3

SWEDEN STOCKHOLM 5

BRAZIL BRASILIA 2

Ergo.EXPORT

PRDCR PRDCT

JAPAN CAR

JAPAN TEXTILE

SWEDEN STEEL

Copyright, all rights reserved

161

SWEDEN TEXTILE

FRANCE WINE

FRANCE CAR

FRANCE STEEL

FRANCE TEXTILE

CNTNNT ID

AFRICA 1

AMERICA 2

ASIA 3

AUSTRALIA 4

EUROPE 5

In the case of our simple example of the database, the structure of the database
suggests that:

• Countries and capitals are related Countries and continents are related,

• Countries export products,

• Countries, capitals, and products are identified by their names, and

• Continents are identified by their names and an identification number.

Accordingly, the following conceptual model can be created for the database:

capital (e1)

country (e2)

producer (e3)

export (e6)

product (e8)

continent (e5)

continent (e7)

continent_id (e10) continent_name (e11)

continent_id (e4)

possesses

p
o
s
s
e
s
s
e
s

p
o
s
s
e
s
s
e
s

is-subtype-of

has-subject

has-object

is-name-ofis-id-of

is
-s

u
b
ty

p
e
-o

f

is-id-of

is
-s

u
b
ty

p
e
-o

f

is
-in

Figure 55 Conceptual model of the database

Copyright, all rights reserved

162

The model is stored internally as a set of logical facts:
possesses(e2, e1).
possesses(e2, e5).
possesses(e5, e2).
nom(e6, e3).
acc(e6, e8).
subtype(e3, e2).
subtype(e4, e10).
subtype(e5, e7).
identifies(e4, e5).
identifies(e10, e7).
name(e11, e7).
lp(e2, e5).

Three-layered schema
The conceptual model is built in Ergo through the use of the Customization Tool. This
mechanism provides a three-layered approach. The description of the world is made
on the intermediate, or conceptual level, which fits very neatly between two other
levels made up from the linguistic facts and the relational database. What this means
is that a set of words representing a language governed by rules of grammar, can be
represented in the conceptual model as entities and relationships.

Figure 56 Three layered schema

These entities and relationships can easily be mapped to table names and columns
in the database. An example of this mapping can be the word the "white house,"
which represents a physical object in the real world, which occupies time and space
characteristics.

Therefore something exists that uniquely identifies the White House in the real world.
On the other hand, if we compare this to the word the 'A president's house' there is
no direct mapping to the real world, because this represents the concept of a set of

Copyright, all rights reserved

163

presidential houses, which is ambiguous in conceptual layer. Therefore we need to
disambiguate this concept by mapping it via a conceptual model, to some physical
object in the real world. In a database, there may be data that contain information on
presidential houses such as the "White House", "Casa Rosal","Malacanang Palace"
etc. Note that a name is different from a concept.

Vocabulary definition
To connect the conceptual model to the natural language, the customizer must define
the terms, which are likely to be used by the users.

The task of vocabulary definition includes connecting natural language terms to the
entities and providing morphological information on them.
For example, for the sample country database, the following terms may be defined:
(e1) -> 'capital' (t1) - noun, plural: 'capitals', pronoun: 'it'

(e2) -> 'country' (t2) - noun, plural: 'countries', pronoun: 'it'
(e7) -> 0 'continent' (t3) - noun, plural: 'continents', pronoun: 'it'
(e8) -> 'product' (t4) - noun, plural: 'products' pronoun: 'it'
(e6) -> 'export' (t5) - verb, forms: 'exports', 'exported', 'exported', 'exporting'
(e6) -> 'produce' (t6) – verb, forms: 'produces', 'produced', 'produced', 'producing'

The customizer can define nouns, verbs, and adjectives and connect them to the
entities. Note that one entity may be connected to zero, one, or several terms in
natural language. Moreover, the same term may be connected to more than one
entity.

There is no need to define base vocabulary, which is common to all applications
(e.g., list, show, what, who, when, is). A base dictionary is shipped with Ergo.

The above definitions are also stored internally as logical facts:
image(e1, t1).
image(e2, t2).
image(e7, t3).
image(e8, t4).
image(e6, t5).
image(e6, t6).
category(t1, noun).
category(t2, noun).
category(t3, noun).
category(t4, noun).
category(t5, verb).
category(t6, verb).
term(t1, 'capital').
term(t2, 'country').
term(t3, 'continent').
term(t4, 'product').
term(t5, 'export').
term(t5, 'produce').
syntax(t1, 'capital'.'capitals'.'i'.nil).
syntax(t2, 'country'.'countries'.'i'.nil).
syntax(t3, 'continent'.'continents'.'i'.nil).
syntax(t4, 'product'.'products'.'i'.nil).
syntax(t5, 'export'.'exports'.'exported'.'exported'.'exporting'.nil).
syntax(t6, 'produce'.'produces'.'produced'.'produced'.'producing'.nil).

Copyright, all rights reserved

164

Dictionary entries are also created during the vocabulary definition, which are added
to the application dictionary.

Database links
In order to relate natural language queries to the relational database, it is necessary
to link concepts of the model to the database.

Not all concepts are related to the database, but there can only be one direct
database link for a specific concept. Of course, several different links may be
introduced, if necessary, through definition of new concepts.

Concepts in our sample database will be connected to the database in the
following way:
(e1) -> SELECT CPTL FROM Ergo.CC
(e2) -> SELECT CNTRY FROM Ergo.CO
(e8) -> SELECT PRDCT FROM Ergo.EXPORT
(e3) -> SELECT PRDCR FROM Ergo.EXPORT
(e11) -> SELECT CNTNNT FROM Ergo.CNT
(e4) -> SELECT CNT_ID FROM Ergo.CO
(e10) -> SELECT ID FROM Ergo.CNT

Note that the links to the database can be very complicated SQL expressions. is
stored internally in DBLF format (explained later):

db(e2, set(V1, relation(Ergo.co(V1 = cntry)))).
db(e1, set(V1, relation(Ergo.co(V1 = cptl)))).
db(e4, set(V1, relation(Ergo.co(V1 = cnt-id)))).
db(e3, set(V1, relation(Ergo.export(V1 = prdcr)))).
db(e8, set(V1, relation(Ergo.export(V1 = prdct)))).
db(e11, set(V1 relation(Ergo.cnt(V1 = cntnnt)))).
db(e10, set(V1 relation(Ergo.cnt(V1 = id)))).

The information on links to the database

Making queries
The following list shows examples of queries the user can make against the sample
database vocabulary definition once the modeling and is completed as suggested.

What is the capital of Sweden?
What country is in what continent?
List the countries of Europe.
Who exports what?
Does Japan produce wine?
What products are exported by France?
Show me the countries, which export cars.
Isn't Brazil in Europe?
What is the continent of Brazil?
List the products.
What countries in Europe export wine?
What countries export all products?

Copyright, all rights reserved

165

The process of translating natural language queries into SQL is described in the
following sections.

Dictionary look-up and syntactic analysis
Syntactic analysis determines the role played by each word in a sentence. For
example, the meaning of "The girl ate the candy", and "The candy ate the girl", are
different due to the roles played by each word in the sentence, since both sentences
contain the same words. Syntactic analysis determines which word is the subject,
and which word is the direct object. This is similar to sentence diagramming which
involves some kind of parsing technique.

Parsing is the first step in processing a natural language query. The parser scans the
input string character by character and, by using dictionary entries and analysis
grammar rules, finds all possible combinations of patterns, which are grammatical.

The parser produces, as one of its outputs, a parse tree (or several parse trees in
case of ambiguous queries), which describes how dictionary look-ups and application
of different syntactic rules resulted in recognition of an input string as grammatical.
Parse trees are built using a bottom-up chart parsing technique For example, for the
query 'who exports all products', the following analysis grammar representation and
rules can be used.

Q: Who exports all products?

Pronoun -> Who
NP -> pronoun
Verb -> exports
Ending -> s
Quantifier -> all
Noun -> product
Ending -> s
Final-punc -> .
np -> quantifier
noun vp-> verb np
S-> np vp
S-maj-> S final-punc

For example, for the query 'who exports all products', the following parse tree (or
syntax tree) will be produced by the parser:

Copyright, all rights reserved

166

Figure 57 Parse-tree

Every syntactic rule (grammar rule) is associated with zero, one, or more semantic
routines and the parser produces, as a second output, a semantic tree in association
with each syntax tree. In short the syntactic tree is transformed into a semantic tree.

Semantic trees are nested structures containing semantic routines which, when
executed, produce the internal representation form of the queries.
For our query example, the semantic tree built by the parser will be a structure like:

Figure 58 Semantic tree

Copyright, all rights reserved

167

The completed parse tree stores the syntactic relationship between each word in the
sentence and acts as a template for building the appropriate semantic structure for
the sentence, but does not represent the meaning of the sentence. This is where
semantic processing is needed to interpret the meaning of the sentence.

Semantic processing
Initially there is a definition for each word in a sentence. Each word definition is a
mini-semantic structure. The individual meanings are combined according to how the
parse tree indicates they syntactically relate to one another. When one word modifies
another its semantic structure alters the semantic structure of the other word. These
mini-semantic structures are merged word by word, then phrase by phrase, and
ultimately, clause by clause. As more and more words participate in the structure, the
meaning of the entire sentence is generated.
Evaluation of the semantic trees results in an internal representation form of the
original query in which the meaning of the query, as far as the universe of discourse
is concerned, is preserved.

The semantic tree of our example will internally be represented as something like:

quest(p01,

two (p02,
nom(p03,

wque(p04, 'who'),
acc(p05,

npquan(p06, 'all',
nomen(p07, 'product')),

verb(p08, 'export')))))).

where p's are pointers to the internal structures created for the input query.

The semantic trees are evaluated by executing the nodes in the tree which all
corresponds to semantic routines.

Using the conceptual model, the semantic routines generate a representation of the
natural language queries called Conceptual Logical Form (CLF). CLF is a logical
expression containing quantifiers, set operators, aggregate functions, a number of
relations, variable names, entity names and constants.

The CLF representation of the query in the example we have been tracing will then
be:

query(

report,
set (y1,

all(y2,
instance(e8, y2) ->
exist(y3,

instance(e6, y3) &
acc(y3,y2) &
nom(y3,y1))))).

Copyright, all rights reserved

168

which simply means the user wants a report (as opposed to a yes/no answer or a
chart) of everything which exports all products and by 'all products' here the user can
only mean products which appear in the database.

The CLF is then verified, completed, and disambiguated by checking the conceptual
model. For instance, if the verb 'export' is defined in the conceptual model such that it
may take subjects from two different entities, then two CLF's must be produced, one
for each case respectively. On the other hand, if there is no subject for the verb
'export' in the model, then the CLF must be aborted.

In the case of our example, navigating through the conceptual model results in a
more completed CLF as follows:

query(

report,
set(y1,

all(y2,
instance(e8, y2) ->
exist(y3,

instance(e6, y3) &
instance(e3, y1) &
acc(y3,y2) &
nom(y3,y1))))).

where the added information is that the list the user wants is a list of countries
(super-type of the concept e3, producer).

Contextual references are also resolved at this stage and results in completing the
CLF statement by inserting the referents from the current or the previous CLF.

Natural language generation - paraphrasing
In order to allow users to verify Ergo's interpretation of a query and/or to select from
several viable interpretations, the meanings expressed in Conceptual Logical Form
must first be converted to natural language. The natural language generator performs
this task using a generation grammar.

To generate natural language from CLF, first CLF is translated into a set of trees
called Initial Trees. Initial Trees contain such information as what the focus of the
query is, what concepts are involved in the query, and what are the relationships
between them. For example, the following set of trees will be generated for our
sample CLF:

noun((id = 3).(group = 1).(scope = nil).(var = yl).(entity = e3).(focus = 1).nil).
noun((id = 1).(group = 1).(scope = nil).(var = y1).(entity = e8).(all = 1).nil).
verb((id = 2).(group = 1).(scope = y2.nil).(var = y1).(entity = e6).(acc = y2).(nom = y1).nil).

The natural language generator then combines the initial trees according to the
generation grammar rules, and by using the syntactic information on the related

Copyright, all rights reserved

169

concepts from the conceptual model, generates an unambiguous natural language
equivalent of the CLF.

In this example, the output of the natural language generator will be:
List the countries that export all products

SQL generation and optimization
When the user has confirmed; selected the interpretation, the corresponding CLF is
translated into SQL. The process of SQL generation includes two steps: CLF to
DBLF translation, and DBLF to SQL translation.

DBLF (Data Base-oriented Logical Form) has a similar format to CLF except that the
entities are replaced by their DB-links from the conceptual model and the appropriate
joins between SQL tables have been established.

In the case of our simple example, the following DBLF will be generated:

query(

report,
set(y1,

relation(Ergo.co(cntry=y1)) &
all(y2,

relation(Ergo.export(prdct=y2)) ->
relation(Ergo.export(prdct=y2,cntry=y1)))))

DBLF contains all information necessary to construct the SQL query. Moreover, Ergo
can handle natural language queries, which cannot be expressed in (a single) SQL
query. What DBLF is translated to is then beyond pure SQL and is called an Answer
set.

The Answer set contains information on the data representation (yes/no, report,
chart) and, in the cases when the data cannot be retrieved by a single SQL query, it
also includes information necessary to create intermediate relations. Intermediate
relations are temporary relations created as SQL tables containing data to be
retrieved by a query later.

The Answer set is defined as
SQL set:
An SQL set consist of one single SELECT statement or the temporary-table triplet,
CREATE TABLE, INSERT INTO, followed by SELECT. Temporary table constructs
are necessary for generating correct SQL for some kinds of queries.

Edit function:
The edit function consists of the triplet First row, Last row, Ascending/Descending. It
specifies how much of the data should be presented to the user.

Display function:
The Display function specifies how the answer should be presented to the user and
is controlled by how the query was formulated. It consists of one of the following:

• REPORT

Copyright, all rights reserved

170

• CHART(chart_type)

• YES NO(on_data, on_no_data)

The SQL for our example will be:

CREATE TABLE t1 (entry , card)

INSERT INTO t1 (entry , card)

SELECT x1.cntry, COUNT(DISTINCT x1.prdct
FROM test.export x1 GROUP BY x1.cntry

SELECT DISTINCT x1.cntry

FROM test.co x1,t1 x3
WHERE x1.cntry = x3.cntry
AND x3.card = (
SELECT COUNT(DISTINCT x2.prdct)

FROM test.export x2)

NIL
REPORT

which results in a temporary relation created as the SQL table T1 with the columns
CNTRY and CARD. The column CNTRY is copied from the column CNTRY of the
table TEST.EXPORT and the values in the column CARD will be calculated as the
number of distinct products (PRDCT column in TEST.EXPORT) related to each
country.

The final query is made against the T1 table and will result in a list of countries, which
export as many products number distinct products found in the database - only
France in this case.

Providing meta-knowledge for Ergo
In general, a system is said to have meta-knowledge if it can answer queries
regarding own knowledge and about the kind of information available in its database.

In Ergo, meta-knowledge is implemented in a simple an elegant way. By keeping
'knowledge of Ergo' in SQL tables, users can use Ergo facilities to query that
knowledge and thus request for meta-knowledge. In this way, there will be no
difference between ordinary queries and meta-knowledge queries - neither from the
user's point of view nor from Ergo's internal processing point of view. That means
that meta-knowledge queries are also translated into SQL' and paraphrased as
ordinary queries.

The conceptual model for meta-knowledge is created in advance as a part of 'base'
conceptual model and is shipped to the users as part of Ergo.

Since the conceptual model is different for different applications, each application
corresponds to a different set of tables where the model is stored. Although each set
of tables may be considered as a different application when being customized, they
can all be covered by one customization so that there is only one conceptual model

Copyright, all rights reserved

171

for meta-knowledge. The reason why we can have only one conceptual model for
meta-knowledge of different applications is that the structure of the tables for storing
meta-knowledge is the same even if their contents are different.

The SQL tables, which are used for storing the conceptual model are called with
dummy unique names when customized. Then, during the CLF-to-DBLF translation,
when these dummy table-names appear in the db-images (i.e., SQL statements
associated with entities), they are replaced with the right table name corresponding
to the current application. For example, the table where a list of all tables included in
the application is kept can be called 'appl_tabs' when creating the conceptual model
for meta-knowledge. Then, when running 'entry' application, the CLF-to-DBLF
translator replaces 'appl_tabs' with 'cntrytabs' in the db_mages.

The (related part of the) conceptual model for each application is stored in SQL
tables automatically during the customization.

For our sample set of tables (which we will call 'entry' application) the tables
contained in the meta-knowledge application include:

EPEDB - System Database
EPEDIATECH.APPLS -table name and creator name of application tables
EPEDIATECH.ACCESS - information on application and authorized user
CNTRYENTS - information on concepts defined in the model
CNTRYIMAGE - information on links between the concepts and NL terms
GROUP.appplicTERMS - information on defined NL terms
CNTRYRELS - information on relationships between the concepts
CNTRYPRELS - information on relationships between the concepts involving
prepositions.

For example, the CNTRYTERIVIS for entry application will include:

IMAGE TERM CATEGORY
TI CAPITAL NOUN
T2 COUNTRY NOUN
T3 CONTINENT NOUN
… … …
T6. PRODUCE VERB

where is are used for identifying the terms and joining among SQL tables.

By loading the conceptual model data in these tables and customizing them properly,
the following sort of queries may be made in Ergo:

What do you know?
What nouns do you know?
List the verbs you understand.
How many words are there?
Show country's category.
Is country related to export?
How many adjectives are defined?

Copyright, all rights reserved

172

Besides the tables created during customization for storing the conceptual model,
three more tables are contained in the 'meta-knowledge application'.

The first table contains information on the applications. It is created during Ergo
installation and updated whenever applications are created or updated. It is called
APPLS and has one row of information for each application customized for Ergo
(application name, customization date, customizer name, and application
description).

The other two tables are SQL catalog tables, which are automatically maintained by
SQL database management system. They are SYSTEM.SYSCATALOG where there
is one row of information for each table and SYSTEM.SYSCOLUMNS where there is
one row of information for each field of every table.

By properly customizing the above-mentioned tables, the user may ask queries such
as:
When was cntry application customized?
Who has created cntry application?
How many tables are there in cntry application?
List the columns of co table.
What applications are there?

Copyright, all rights reserved

173

Appendix B. Defining the database structure in corpus-
centric applications.

Please contact Dialogue Technologies for more information on this subject.

